Mitochondrial pyruvate transport regulates presynaptic metabolism and neurotransmission

被引:1
|
作者
Tiwari, Anupama [1 ]
Myeong, Jongyun [1 ]
Hashemiaghdam, Arsalan [1 ,4 ]
Stunault, Marion I. [1 ]
Zhang, Hao [2 ]
Niu, Xiangfeng [2 ]
Laramie, Marissa A. [1 ,5 ]
Sponagel, Jasmin [1 ]
Shriver, Leah P. [2 ]
Patti, Gary J. [2 ]
Klyachko, Vitaly A. [1 ]
Ashrafi, Ghazaleh [1 ,3 ]
机构
[1] Washington Univ, Dept Cell Biol & Physiol, Sch Med, St Louis, MO 63110 USA
[2] Washington Univ, Ctr Mass Spectrometry & Metab Tracing, Dept Chem, Dept Med, St Louis, MO USA
[3] Washington Univ, Needleman Ctr Neurometab & Axonal Therapeut, Sch Med, St Louis, MO 63110 USA
[4] Tufts Med Ctr, Boston, MA USA
[5] Washington State Univ, Pullman, WA USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 46期
关键词
GLUCOSE-CONCENTRATION; SIRT3; ATP; NEURONS; CARRIER; MOBILIZATION; ACETYLATION; SPECIFICITY; DEMAND; BRAIN;
D O I
10.1126/sciadv.adp7423
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glucose has long been considered the primary fuel source for the brain. However, glucose levels fluctuate in the brain during sleep or circuit activity, posing major metabolic stress. Here, we demonstrate that the mammalian brain uses pyruvate as a fuel source, and pyruvate can support neuronal viability in the absence of glucose. Nerve terminals are sites of metabolic vulnerability, and we show that mitochondrial pyruvate uptake is a critical step in oxidative ATP production in hippocampal terminals. We find that the mitochondrial pyruvate carrier is post-translationally modified by lysine acetylation, which, in turn, modulates mitochondrial pyruvate uptake. Our data reveal that the mitochondrial pyruvate carrier regulates distinct steps in neurotransmission, namely, the spatiotemporal pattern of synaptic vesicle release and the efficiency of vesicle retrieval-functions that have profound implications for synaptic plasticity. In summary, we identify pyruvate as a potent neuronal fuel and mitochondrial pyruvate uptake as a critical node for the metabolic control of neurotransmission in hippocampal terminals.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness
    Sharma, Arpit
    Oonthonpan, Lalita
    Sheldon, Ryan D.
    Rauckhorst, Adam J.
    Zhu, Zhiyong
    Tompkins, Sean C.
    Choi, Kevin
    Grzesik, Wojciech J.
    Gray, Lawrence R.
    Scerbo, Diego A.
    Pewa, Alvin D.
    Cushing, Emily M.
    Dyle, Michael C.
    Cox, James E.
    Adams, Chris
    Davies, Brandon S.
    Shields, Richard K.
    Norris, Andrew W.
    Patti, Gary
    Zingman, Leonid, V
    Taylor, Eric B.
    ELIFE, 2019, 8
  • [32] Post-translational modification by acetylation regulates the mitochondrial carnitine/acylcarnitine transport protein
    Giangregorio, Nicola
    Tonazzi, Annamaria
    Console, Lara
    Indiveri, Cesare
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2017, 426 (1-2) : 65 - 73
  • [33] Increased presynaptic regulation of dopamine neurotransmission in the nucleus accumbens core following chronic ethanol self-administration in female macaques
    Siciliano, Cody A.
    Calipari, Erin S.
    Yorgason, Jordan T.
    Lovinger, David M.
    Mateo, Yolanda
    Jimenez, Vanessa A.
    Helms, Christa M.
    Grant, Kathleen A.
    Jones, Sara R.
    PSYCHOPHARMACOLOGY, 2016, 233 (08) : 1435 - 1443
  • [34] ATR regulates neuronal activity by modulating presynaptic firing
    Kirtay, Murat
    Sell, Josefine
    Marx, Christian
    Haselmann, Holger
    Ceanga, Mihai
    Zhou, Zhong-Wei
    Rahmati, Vahid
    Kirkpatrick, Joanna
    Buder, Katrin
    Grigaravicius, Paulius
    Ori, Alessandro
    Geis, Christian
    Wang, Zhao-Qi
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [35] Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain
    Graves, Steven M.
    Xie, Zhong
    Stout, Kristen A.
    Zampese, Enrico
    Burbulla, Lena F.
    Shih, Jean C.
    Kondapalli, Jyothisri
    Patriarchi, Tommaso
    Tian, Lin
    Brichta, Lars
    Greengard, Paul
    Krainc, Dimitri
    Schumacker, Paul T.
    Surmeier, D. James
    NATURE NEUROSCIENCE, 2020, 23 (01) : 15 - +
  • [36] Identification and Functional Expression of the Mitochondrial Pyruvate Carrier
    Herzig, Sebastien
    Raemy, Etienne
    Montessuit, Sylvie
    Veuthey, Jean-Luc
    Zamboni, Nicola
    Westermann, Benedikt
    Kunji, Edmund R. S.
    Martinou, Jean-Claude
    SCIENCE, 2012, 337 (6090) : 93 - 96
  • [37] Mitochondrial pyruvate import and its effects on homeostasis
    Vanderperre, Benoit
    Bender, Tom
    Kunji, Edmund R. S.
    Martinou, Jean-Claude
    CURRENT OPINION IN CELL BIOLOGY, 2015, 33 : 35 - 41
  • [38] The Role of Mitochondrial Pyruvate Carrier in Neurological Disorders
    Liu, Yue
    Yu, Xiying
    Jiang, Wei
    MOLECULAR NEUROBIOLOGY, 2025, 62 (03) : 2846 - 2856
  • [39] STAT3 Regulates Mouse Neural Progenitor Proliferation and Differentiation by Promoting Mitochondrial Metabolism
    Su, Yixun
    Zhang, Wenjun
    Patro, C. Pawan K.
    Zhao, Jing
    Mu, Tianhao
    Ma, Zhongnan
    Xu, Jianqiang
    Ban, Kenneth
    Yi, Chenju
    Zhou, Yi
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [40] Metabolic remodeling: a pyruvate transport affair
    Rampelt, Heike
    van der Laan, Martin
    EMBO JOURNAL, 2015, 34 (07) : 835 - 837