Mitochondrial pyruvate transport regulates presynaptic metabolism and neurotransmission

被引:0
|
作者
Tiwari, Anupama [1 ]
Myeong, Jongyun [1 ]
Hashemiaghdam, Arsalan [1 ,4 ]
Stunault, Marion I. [1 ]
Zhang, Hao [2 ]
Niu, Xiangfeng [2 ]
Laramie, Marissa A. [1 ,5 ]
Sponagel, Jasmin [1 ]
Shriver, Leah P. [2 ]
Patti, Gary J. [2 ]
Klyachko, Vitaly A. [1 ]
Ashrafi, Ghazaleh [1 ,3 ]
机构
[1] Washington Univ, Dept Cell Biol & Physiol, Sch Med, St Louis, MO 63110 USA
[2] Washington Univ, Ctr Mass Spectrometry & Metab Tracing, Dept Chem, Dept Med, St Louis, MO USA
[3] Washington Univ, Needleman Ctr Neurometab & Axonal Therapeut, Sch Med, St Louis, MO 63110 USA
[4] Tufts Med Ctr, Boston, MA USA
[5] Washington State Univ, Pullman, WA USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 46期
关键词
GLUCOSE-CONCENTRATION; SIRT3; ATP; NEURONS; CARRIER; MOBILIZATION; ACETYLATION; SPECIFICITY; DEMAND; BRAIN;
D O I
10.1126/sciadv.adp7423
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glucose has long been considered the primary fuel source for the brain. However, glucose levels fluctuate in the brain during sleep or circuit activity, posing major metabolic stress. Here, we demonstrate that the mammalian brain uses pyruvate as a fuel source, and pyruvate can support neuronal viability in the absence of glucose. Nerve terminals are sites of metabolic vulnerability, and we show that mitochondrial pyruvate uptake is a critical step in oxidative ATP production in hippocampal terminals. We find that the mitochondrial pyruvate carrier is post-translationally modified by lysine acetylation, which, in turn, modulates mitochondrial pyruvate uptake. Our data reveal that the mitochondrial pyruvate carrier regulates distinct steps in neurotransmission, namely, the spatiotemporal pattern of synaptic vesicle release and the efficiency of vesicle retrieval-functions that have profound implications for synaptic plasticity. In summary, we identify pyruvate as a potent neuronal fuel and mitochondrial pyruvate uptake as a critical node for the metabolic control of neurotransmission in hippocampal terminals.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Mitochondrial pyruvate metabolism regulates the activation of quiescent adult neural stem cells
    Petrelli, Francesco
    Scandella, Valentina
    Montessuit, Sylvie
    Zamboni, Nicola
    Martinou, Jean-Claude
    Knobloch, Marlen
    SCIENCE ADVANCES, 2023, 9 (09)
  • [2] Regulation of Presynaptic Neurotransmission by Macroautophagy
    Hernandez, Daniela
    Torres, Clara A.
    Setlik, Wanda
    Cebrian, Carolina
    Mosharov, Eugene V.
    Tang, Guomei
    Cheng, Hsiao-Chun
    Kholodilov, Nikolai
    Yarygina, Olga
    Burke, Robert E.
    Gershon, Michael
    Sulzer, David
    NEURON, 2012, 74 (02) : 277 - 284
  • [3] Treating Hepatic Steatosis and Fibrosis by Modulating Mitochondrial Pyruvate Metabolism
    McCommis, Kyle S.
    Finck, Brian N.
    CELLULAR AND MOLECULAR GASTROENTEROLOGY AND HEPATOLOGY, 2019, 7 (02): : 275 - 284
  • [4] Mitochondrial bioenergetics: coupling of transport to tubular mitochondrial metabolism
    Cheng, Yong-Yao W.
    Cheng, Chih-Jen
    CURRENT OPINION IN NEPHROLOGY AND HYPERTENSION, 2024, 33 (04): : 405 - 413
  • [5] Treating Fatty Liver Disease by Modulating Mitochondrial Pyruvate Metabolism
    Colca, Jerry R.
    McDonald, William G.
    McCommis, Kyle S.
    Finck, Brian N.
    HEPATOLOGY COMMUNICATIONS, 2017, 1 (03) : 193 - 197
  • [6] Decreased Mitochondrial Pyruvate Transport Activity in the Diabetic Heart ROLE OF MITOCHONDRIAL PYRUVATE CARRIER 2 (MPC2) ACETYLATION
    Vadvalkar, Shraddha S.
    Matsuzaki, Satoshi
    Eyster, Craig A.
    Giorgione, Jennifer R.
    Bockus, Lee B.
    Kinter, Caroline S.
    Kinter, Michael
    Humphries, Kenneth M.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2017, 292 (11) : 4423 - 4433
  • [7] Propionate Increases Hepatic Pyruvate Cycling and Anaplerosis and Alters Mitochondrial Metabolism
    Perry, Rachel J.
    Borders, Candace B.
    Cline, Gary W.
    Zhang, Xian-Man
    Alves, Tiago C.
    Petersen, Kitt Falk
    Rothman, Douglas L.
    Kibbey, Richard G.
    Shulman, Gerald I.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (23) : 12161 - 12170
  • [8] Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism
    Schell, John C.
    Wisidagama, Dona R.
    Bensard, Claire
    Zhao, Helong
    Wei, Peng
    Tanner, Jason
    Flores, Aimee
    Mohlman, Jeffrey
    Sorensen, Lise K.
    Earl, Christian S.
    Olson, Kristofor A.
    Miao, Ren
    Waller, T. Cameron
    Delker, Don
    Kanth, Priyanka
    Jiang, Lei
    DeBerardinis, Ralph J.
    Bronner, Mary P.
    Li, Dean Y.
    Cox, James E.
    Christofk, Heather R.
    Lowry, William E.
    Thummel, Carl S.
    Rutter, Jared
    NATURE CELL BIOLOGY, 2017, 19 (09) : 1027 - +
  • [9] Rewiring Mitochondrial Pyruvate Metabolism: Switching Off the Light in Cancer Cells?
    Szlosarek, Peter W.
    Lee, SukJun
    Pollard, Patrick J.
    MOLECULAR CELL, 2014, 56 (03) : 343 - 344
  • [10] The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function
    Wenes, Mathias
    Jaccard, Alison
    Wyss, Tania
    Maldonado-Perez, Noelia
    Teoh, Shao Thing
    Lepez, Anouk
    Renaud, Fabrice
    Franco, Fabien
    Waridel, Patrice
    Maroun, Celine Yacoub
    Tschumi, Benjamin
    Dumauthioz, Nina
    Zhang, Lianjun
    Donda, Alena
    Martin, Francisco
    Migliorini, Denis
    Lunt, Sophia Y.
    Ho, Ping-Chih
    Romero, Pedro
    CELL METABOLISM, 2022, 34 (05) : 731 - +