Deep Fractional Multidimensional Spectrum Convolutional Neural Fusion Network for Identifying Complex Power Quality Disturbance

被引:1
|
作者
He, Minjun [1 ]
Li, Jianmin [2 ,3 ]
Mingotti, Alessandro [4 ]
Tang, Qiu [1 ]
Peretto, Lorenzo [4 ]
Teng, Zhaosheng [1 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
[2] Hunan Normal Univ, Coll Engn & Design, Changsha 410081, Peoples R China
[3] Hunan Normal Univ, Inst Interdisciplinary Studies, Changsha 410081, Peoples R China
[4] Univ Bologna, Dept Elect Elect & Informat Engn G Marconi, I-40136 Bologna, Italy
基金
中国国家自然科学基金;
关键词
Feature extraction; Power quality; Noise; Harmonic analysis; Transient analysis; Convolution; Fourier transforms; Time-frequency analysis; Support vector machines; Indexes; Automatic feature extraction; deep 1-D convolution; multidimensional spectrum fusion network; power quality disturbances; renewable energy; spatial fractional analysis; FEATURE-SELECTION; S-TRANSFORM; CLASSIFICATION;
D O I
10.1109/TIM.2024.3470056
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The widespread utilization of renewable energy sources can cause serious power quality problems. It presents new challenges for detecting power quality. A deep fractional multidimensional spectrum convolutional neural fusion network (FMSNet) method for automatically identifying and classifying complex power quality disturbance (PQD) signals is proposed in this article. It includes a 1-D spatial sense convolution block (SSCB), streamline sandwich block (SSB), and spatial fractional Fourier transform (SFRFT). Specifically, the SFRFT extracts the fractional domain features of the PQD signal. The issue of complex disturbance signals lacking detailed feature information is overcome by utilizing dynamic spatial fractional domain information. Moreover, the properties of FMSNet are further improved by combining the proposed SSCB and SSB. It is shown based on a large number of simulation experiments and hardware test experiments that the method presents significant detection capability and excellent noise immunity for the identification of complex PQD signals under different noise conditions.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A Deep Fourier Neural Network for Seizure Prediction Using Convolutional Neural Network and Ratios of Spectral Power
    Peng, Peizhen
    Xie, Liping
    Wei, Haikun
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2021, 31 (08)
  • [32] Design of a Convolutional Neural Network and a Modified Genetic Algorithm for Power Grid Disturbance Classification
    Abegaz, Brook
    Muller, Noah
    2024 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY, EIT 2024, 2024, : 686 - 691
  • [33] MmNet: Identifying Mikania micrantha Kunth in the wild via a deep Convolutional Neural Network
    Qiao Xi
    Li Yan-zhou
    Su Guang-yuan
    Tian Hong-kun
    Zhang Shuo
    Sun Zhong-yu
    Yang Long
    Wan Fang-hao
    Qian Wan-qiang
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2020, 19 (05) : 1292 - 1300
  • [34] Hyperbolic Window S-Transform Aided Deep Neural Network Model-Based Power Quality Monitoring Framework in Electrical Power System
    Nandi, Kiron
    Das, Arup Kumar
    Ghosh, Riddhi
    Dalai, Sovan
    Chatterjee, Biswendu
    IEEE SENSORS JOURNAL, 2021, 21 (12) : 13695 - 13703
  • [35] Complex Power Quality Disturbance Recognition Research Based on Deep Complementary Fusion of 2-D Coding Transition
    Duan, Zhangling
    Peng, Zhi
    Song, Juncai
    Yang, Xun
    Lu, Siliang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [36] A Multi-Cooperative Deep Convolutional Neural Network for Spatiotemporal Satellite Image Fusion
    Li, Weisheng
    Yang, Chao
    Peng, Yidong
    Zhang, Xiayan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 10174 - 10188
  • [37] A Pseudo-Siamese Deep Convolutional Neural Network for Spatiotemporal Satellite Image Fusion
    Li, Weisheng
    Yang, Chao
    Peng, Yidong
    Du, Jiao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 1205 - 1220
  • [38] A Deep Convolutional Neural Network With Multiscale Feature Dynamic Fusion for InSAR Phase Filtering
    Yang, Wang
    He, Yi
    Zhang, Lifeng
    Yao, Sheng
    Wen, Zhiqing
    Cao, Shengpeng
    Zhao, Zhanao
    Chen, Yi
    Zhang, Yali
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 6687 - 6710
  • [39] SDCAFNet: A Deep Convolutional Neural Network for Land-Cover Semantic Segmentation With the Fusion of PolSAR and Optical Images
    Chu, Boce
    Chen, Jinyong
    Chen, Jie
    Pei, Xinyu
    Yang, Wei
    Gao, Feng
    Wang, Shicheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8928 - 8942
  • [40] Identification of power quality disturbance with noises based on an integrated deep learning network
    Wang H.
    Cheng S.
    Xu Q.
    Liu Y.
    Wang C.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2024, 52 (10): : 11 - 20