A LiDAR-Based Active Yaw Control Strategy for Optimal Wake Steering in Paired Wind Turbines

被引:1
作者
Mahmoodi, Esmail [1 ,2 ]
Khezri, Mohammad [3 ]
Ebrahimi, Arash [4 ,5 ]
Ritschel, Uwe [4 ,5 ]
Kamandi, Majid [6 ]
机构
[1] Shahrood Univ Technol, Dept Mech Engn Biosyst, Shahrood 3619995161, Iran
[2] Minist Sci Res & Technol, Ctr Int Sci Studies & Collaborat, Tehran 158757788, Iran
[3] Ferdowsi Univ Mashhad, Dept Mech Engn, Mashhad 9177948974, Iran
[4] Univ Rostock, Inst Wind Energy Technol, Fac Mech Engn & Marine Technol, D-18051 Rostock, Germany
[5] IWEN Energy Inst, D-18119 Rostock, Germany
[6] Univ Tehran, Dept Mech Engn Biosyst, Karaj 7787131587, Iran
关键词
wind turbine; partial wake; power gain; LiDAR measurements; yaw control; ANALYTICAL-MODEL; OPTIMIZATION; FARM;
D O I
10.3390/en17225635
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, we investigate a yaw control strategy in a two-turbine wind farm with 3.5 MW turbines, aiming to optimize power management. The wind farm is equipped with a nacelle-mounted multi-plane LiDAR system for wind speed measurements. Using an analytical model and integrating LiDAR and SCADA data, we estimate wake effects and power output. Our results show a 2% power gain achieved through optimal yaw control over a year-long assessment. The wind predominantly blows from the southwest, perpendicular to the turbine alignment. The optimal yaw and power gain depend on wind conditions, with higher turbulence intensity and wind speed leading to reduced gains. The power gain follows a bell curve across the range of wind inflow angles, peaking at 1.7% with a corresponding optimal yaw of 17 degrees at an inflow angle of 12 degrees. Further experiments are recommended to refine the estimates and enhance the performance of wind farms through optimized yaw control strategies, ultimately contributing to the advancement of sustainable energy generation.
引用
收藏
页数:14
相关论文
共 46 条
[1]   Wake steering via yaw control in multi-turbine wind farms: Recommendations based on large-eddy simulation [J].
Archer, Cristina L. ;
Vasel-Be-Hagh, Ahmad .
SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2019, 33 :34-43
[2]   Wind Turbine Systematic Yaw Error: Operation Data Analysis Techniques for Detecting It and Assessing Its Performance Impact [J].
Astolfi, Davide ;
Castellani, Francesco ;
Becchetti, Matteo ;
Lombardi, Andrea ;
Terzi, Ludovico .
ENERGIES, 2020, 13 (09)
[3]   Design and Assessment of a LIDAR-Based Model Predictive Wind Turbine Control [J].
Bao, Jie ;
Yue, Hong .
ENERGIES, 2022, 15 (17)
[4]   Modelling and measurements of wakes in large wind farms [J].
Barthelmie, R. J. ;
Rathmann, O. ;
Frandsen, S. T. ;
Hansen, K. ;
Politis, E. ;
Prospathopoulos, J. ;
Rados, K. ;
Cabezon, A. ;
Schlez, W. ;
Phillips, J. ;
Neubert, A. ;
Schepers, J. G. ;
van der Pijl, S. P. .
SCIENCE OF MAKING TORQUE FROM WIND, 2007, 75
[5]  
Bartl J., 2018, Wind. Energy Sci. Discuss, P1, DOI [10.5194/wes-2018-24, DOI 10.5194/WES-2018-24]
[6]   Wind farm power optimization via yaw angle control: A wind tunnel study [J].
Bastankhah, Majid ;
Porte-Agel, Fernando .
JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2019, 11 (02)
[7]   Experimental and theoretical study of wind turbine wakes in yawed conditions [J].
Bastankhah, Majid ;
Porte-Agel, Fernando .
JOURNAL OF FLUID MECHANICS, 2016, 806 :506-541
[8]   A new analytical model for wind-turbine wakes [J].
Bastankhah, Majid ;
Porte-Agel, Fernando .
RENEWABLE ENERGY, 2014, 70 :116-123
[9]  
Boorsma K., 2016, LiDAR Application for WInd Energy Efficiency
[10]   LiDAR-enabled model predictive control of wind turbines with real-time capabilities [J].
Bottasso, C. L. ;
Pizzinelli, P. ;
Riboldi, C. E. D. ;
Tasca, L. .
RENEWABLE ENERGY, 2014, 71 :442-452