Interface-resolved photovoltage generation dynamics and band structure evolution in a PbS quantum dot solar cell

被引:4
作者
Sloboda, Tamara [1 ]
Kammlander, Birgit [1 ,2 ]
Berggren, Elin [2 ]
Riva, Stefania [2 ]
Giangrisostomi, Erika [3 ]
Ovsyannikov, Ruslan [3 ]
Rensmo, Hakan [2 ,4 ]
Lindblad, Andreas [2 ]
Cappel, Ute B. [1 ,2 ,4 ]
机构
[1] KTH Royal Inst Technol, Dept Chem, Div Appl Phys Chem, SE-10044 Stockholm, Sweden
[2] Uppsala Univ, Dept Phys & Astron, Div Xray Photon Sci, Box 516, SE-75120 Uppsala, Sweden
[3] Helmholtz Zentrum Berlin Mat & Energie GmbH, Inst Methods & Instrumentat Synchrotron Radiat Res, Albert Einstein Str 15, D-12489 Berlin, Germany
[4] Uppsala Univ, Dept Phys & Astron, Wallenberg Initiat Mat Sci Sustainabil, S-75120 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
CARRIER TRANSPORT; PASSIVATION; PERFORMANCE; ELECTRON; STATES;
D O I
10.1039/d4nr03428g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For directed development of solar cells using nanomaterials such as quantum dots, there is a need to understand the device function in detail. Understanding where photovoltage is generated in a device and where energy losses occur is a key aspect of this, and development of methods which can provide this information is needed. We have previously shown that time-resolved photoelectron spectroscopy of core levels can be used to follow the photovoltage dynamics at a specific interface of a lead sulfide quantum dot solar cell. Here, we use the method's selectivity and sample design to investigate the photovoltage generation in different parts of this solar cell and determine how the different layers (including the absorber layer thickness) contribute to charge separation. We show that all layers contribute to photovoltage generation and that a gold contact deposited on the quantum dots is necessary for full photovoltage generation and slow charge recombination. By combining the information obtained, we are able to experimentally follow the time evolution of the solar cell band structure during the charge separation process. Furthermore, we can identify which specific layers need to be optimized for an overall improvement of quantum dot cells. In the future, this methodology can be applied to other types of devices to provide insights into photovoltage generation mechanisms. The charge separation and recombination dynamics at different interfaces in a quantum dot solar cell are investigated by time-resolved photoelectron spectroscopy.
引用
收藏
页码:21002 / 21010
页数:9
相关论文
共 42 条
[1]   PbS-Based Quantum Dot Solar Cells with Engineered π-Conjugated Polymers Achieve 13% Efficiency [J].
Al Mubarok, Muhibullah ;
Wibowo, Febrian Tri Adhi ;
Aqoma, Havid ;
Krishna, Narra Vamsi ;
Lee, Wooseop ;
Ryu, Du Yeol ;
Cho, Shinuk ;
Jung, In Hwan ;
Jang, Sung-Yeon .
ACS ENERGY LETTERS, 2020, 5 (11) :3452-3460
[2]   Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation [J].
Albaladejo-Siguan, Miguel ;
Becker-Koch, David ;
Taylor, Alexander D. ;
Sun, Qing ;
Lami, Vincent ;
Oppenheimer, Pola Goldberg ;
Paulus, Fabian ;
Vaynzof, Yana .
ACS NANO, 2020, 14 (01) :384-393
[3]   Revealing the Band Structure of FAPI Quantum Dot Film and Its Interfaces with Electron and Hole Transport Layer Using Time Resolved Photoemission [J].
Amelot, Dylan ;
Rastogi, Prachi ;
Martinez, Bertille ;
Greboval, Charlie ;
Livache, Clement ;
Bresciani, Francesco Andrea ;
Qu, Junling ;
Chu, Audrey ;
Goyal, Mayank ;
Chee, Sang -Soo ;
Casaretto, Nicolas ;
Xu, Xiang Zhen ;
Methivier, Christophe ;
Cruguel, Herve ;
Ouerghi, Abdelkarim ;
Nag, Angshuman ;
Silly, Mathieu G. ;
Witkowski, Nadine ;
Lhuillier, Emmanuel .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (06) :3873-3880
[4]   Balancing Charge Carrier Transport in a Quantum Dot P-N Junction toward Hysteresis-Free High-Performance Solar Cells [J].
Cho, Yuljae ;
Hou, Bo ;
Lim, Jongchul ;
Lee, Sanghyo ;
Pak, Sangyeon ;
Hong, John ;
Giraud, Paul ;
Jang, A-Rang ;
Lee, Young-Woo ;
Lee, Juwon ;
Jang, Jae Eun ;
Snaith, Henry J. ;
Morris, Stephen M. ;
Sohn, Jung Inn ;
Cha, SeungNam ;
Kim, Jong Min .
ACS ENERGY LETTERS, 2018, 3 (04) :1036-1043
[5]   Stabilizing Surface Passivation Enables Stable Operation of Colloidal Quantum Dot Photovoltaic Devices at Maximum Power Point in an Air Ambient [J].
Choi, Jongmin ;
Choi, Min-Jae ;
Kim, Junghwan ;
Dinic, Filip ;
Todorovic, Petar ;
Sun, Bin ;
Wei, Mingyang ;
Baek, Se-Woong ;
Hoogland, Sjoerd ;
de Arquer, F. Pelayo Garcia ;
Voznyy, Oleksandr ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2020, 32 (07)
[6]   Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics [J].
Choi, Min-Jae ;
de Arquer, F. Pelayo Garcia ;
Proppe, Andrew H. ;
Seifitokaldani, Ali ;
Choi, Jongmin ;
Kim, Junghwan ;
Baek, Se-Woong ;
Liu, Mengxia ;
Sun, Bin ;
Biondi, Margherita ;
Scheffel, Benjamin ;
Walters, Grant ;
Nam, Dae-Hyun ;
Jo, Jea Woong ;
Ouellette, Olivier ;
Voznyy, Oleksandr ;
Hoogland, Sjoerd ;
Kelley, Shana O. ;
Jung, Yeon Sik ;
Sargent, Edward H. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]  
Chuang Chia-Hao M, 2014, Nat Mater, V13, P796, DOI 10.1038/nmat3984
[8]   Surface band bending and carrier dynamics in colloidal quantum dot solids [J].
Clark, Pip C. J. ;
Lewis, Nathan K. ;
Ke, Jack Chun-Ren ;
Ahumada-Lazo, Ruben ;
Chen, Qian ;
Neo, Darren C. J. ;
Gaulding, E. Ashley ;
Pach, Gregory F. ;
Pis, Igor ;
Silly, Mathieu G. ;
Flavell, Wendy R. .
NANOSCALE, 2021, 13 (42) :17793-17806
[9]   Over 15% Efficiency PbS Quantum-Dot Solar Cells by Synergistic Effects of Three Interface Engineering: Reducing Nonradiative Recombination and Balancing Charge Carrier Extraction [J].
Ding, Chao ;
Wang, Dandan ;
Liu, Dong ;
Li, Hua ;
Li, Yusheng ;
Hayase, Shuzi ;
Sogabe, Tomah ;
Masuda, Taizo ;
Zhou, Yong ;
Yao, Yingfang ;
Zou, Zhigang ;
Wang, Ruixiang ;
Shen, Qing .
ADVANCED ENERGY MATERIALS, 2022, 12 (35)
[10]   Passivation Strategy of Reducing Both Electron and Hole Trap States for Achieving High-Efficiency PbS Quantum-Dot Solar Cells with Power Conversion Efficiency over 12% [J].
Ding, Chao ;
Liu, Feng ;
Zhang, Yaohong ;
Hayase, Shuzi ;
Masuda, Taizo ;
Wang, Ruixiang ;
Zhou, Yong ;
Yao, Yingfang ;
Zou, Zhigang ;
Shen, Qing .
ACS ENERGY LETTERS, 2020, 5 (10) :3224-3236