共 50 条
Shear-driven diffusion with stochastic resetting
被引:2
|作者:
Abdoli, Iman
[1
]
Olsen, Kristian Stolevik
[1
]
Loewen, Hartmut
[1
]
机构:
[1] Heinrich Heine Univ Dusseldorf, Inst Theoret Phys Weiche Mat 2, D-40225 Dusseldorf, Germany
关键词:
BROWNIAN-MOTION;
SELF-DIFFUSION;
PARTICLES;
DISPERSION;
TIME;
FLOW;
D O I:
10.1063/5.0243369
中图分类号:
O3 [力学];
学科分类号:
08 ;
0801 ;
摘要:
External flows, such as shear flow, add directional biases to particle motion, introducing anisotropic behavior into the system. Here, we explore the non-equilibrium dynamics that emerge from the interplay between linear shear flow and stochastic resetting. The particle diffuses with a constant diffusion coefficient while simultaneously experiencing linear shear and being stochastically returned to its initial position at a constant rate. We perturbatively derive the steady-state probability distribution that captures the effects of shear-induced anisotropy on the spatial structure of the distribution. We show that the dynamics, which initially spread diffusively, will at late times reach a steady state due to resetting. At intermediate timescales, the system approaches this steady state either by passing through a superdiffusive regime (in the shear-dominated case) or by exhibiting purely sub-diffusive behavior (in the resetting-dominated case). The steady state also gains cross correlations, a feature absent in simpler resetting systems. We also show that the skewness has a non-monotonic behavior when one passes from the shear-dominated to the resetting-dominated regime. We demonstrate that at small resetting rates, the energetic cost of maintaining the steady state becomes significantly higher due to the displacement caused by shear, a unique scaling not seen without shear. Surprisingly, if only the x-position is reset, the system can maintain a Brownian yet non-Gaussian diffusion pattern with non-trivial tails in the distribution.
引用
收藏
页数:12
相关论文