Prediction of mechanical properties of polymer composites with carbon fillers based on low-frequency electrical conductivity data

被引:0
|
作者
.Lisova, O. M. [2 ]
Makhno, S. M. [1 ,2 ]
Gunya, G. M. [2 ]
Gorbik, P. P. [2 ]
Ivanenko, K. O. [1 ,3 ]
Sementsov, Yu, I [1 ,2 ]
机构
[1] Ningbo Sino Ukrainian New Mat Ind Technol Inst Co, 15th Floor,777 West Zhongguan Rd,Zhuangshi St, Ningbo 315201, Zhejian, Peoples R China
[2] Natl Acad Sci Ukraine, Chuiko Inst Surface Chem, 17 Gen Naumov Str, UA-03164 Kyiv, Ukraine
[3] Natl Acad Sci Ukraine, Inst Macromol Chem, 48 Kharkiv Highway, UA-02160 Kyiv, Ukraine
来源
FUNCTIONAL MATERIALS | 2024年 / 31卷 / 03期
关键词
relative bending strength; electrical conductivity; strength limit; percolation characteristics; FUNCTIONALIZATION;
D O I
10.15407/fm31.03.425
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Polymers reinforced with carbon fillers are used in load-bearing structures, racing cars, sports equipment, aircraft and drones due to their special stiffness and strength, as well as their electromagnetic shielding or absorption properties. The search for new materials, composites and quick prediction of their properties is an urgent task of polymer materials science. The paper shows that predicting the mechanical strength of the composites is possible by measuring electrical conductivity at low frequencies and extrapolating these values using the obtained expressions. The relative mechanical bending strength has a quadratic dependence on the filler content and can be represented with satisfactory accuracy by the low-frequency electrical conductivity for the composite system.
引用
收藏
页码:425 / 431
页数:7
相关论文
共 50 条
  • [31] Electrical Conductivity and Mechanical Properties of Dendritic Copper Particulate Polymer Films
    Shivamurthy, B.
    Thimmappa, B. H. S.
    Purushothama, Rohan
    Sai, G. K. V. D. Datta
    TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2019, 20 (02) : 99 - 106
  • [32] Electrical Conductivity and Mechanical Properties of Dendritic Copper Particulate Polymer Films
    B. Shivamurthy
    B. H. S. Thimmappa
    Rohan Purushothama
    G. K. V. D. Datta Sai
    Transactions on Electrical and Electronic Materials, 2019, 20 : 99 - 106
  • [33] A comparative study on the mechanical, electrical and piezoresistive properties of polymer composites using carbon nanostructures of different topology
    Aviles, F.
    May-Pat, A.
    Lopez-Manchado, M. A.
    Verdejo, R.
    Bachmatiuk, A.
    Ruemmeli, M. H.
    EUROPEAN POLYMER JOURNAL, 2018, 99 : 394 - 402
  • [34] Percolative Composites with Carbon Nanohorns: Low-Frequency and Ultra-High Frequency Response
    Sedelnikova, Olga V.
    Baskakova, Kseniya I.
    Gusel'nikov, Artem V.
    Plyusnin, Pavel E.
    Bulusheva, Lyubov G.
    Okotrub, Alexander V.
    MATERIALS, 2019, 12 (11)
  • [35] Multi-scale prediction of effective conductivity for carbon nanofiber polymer composites
    Zare, Yasser
    Munir, Muhammad Tajammal
    Rhee, Kyong Yop
    Park, Soo-Jin
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 8895 - 8902
  • [36] Electrical Transport Properties of Carbon Nanotube/Polyester Polymer Composites
    Z. Samir
    S. Boukheir
    R. Belhimria
    M. E. Achour
    L. C. Costa
    Journal of Superconductivity and Novel Magnetism, 2019, 32 : 185 - 190
  • [37] Low temperature electrical conductivity of low-density polyethylene/carbon black composites
    T. M. Tawalbeh
    S. Saq’an
    S. F. Yasin
    A. M. Zihlif
    G. Ragosta
    Journal of Materials Science: Materials in Electronics, 2005, 16 : 351 - 354
  • [38] Mechanical and electrical properties of carbon nanotube / polydimethylsiloxane composites yarn
    Liu W.
    Xu F.
    Zhu N.
    Wang S.
    Liu, Wei (wliu@sues.edu.cn), 1600, Association Nonwoven Fabrics Industry (11): : 36 - 42
  • [39] Mechanical and Electrical Properties of Carbon Nanotube/Polydimethylsiloxane Composites Yarn
    Liu, Wei
    Xu, Fujun
    Zhu, Nianhua
    Wang, Shuang
    JOURNAL OF ENGINEERED FIBERS AND FABRICS, 2016, 11 (04): : 36 - 42
  • [40] Prediction and optimization of electrical conductivity for polymer-based composites using design of experiment and artificial neural networks
    Seyed Morteza Razavi
    Ali Sadollah
    Abobakr Khalil Al-Shamiri
    Neural Computing and Applications, 2022, 34 : 7653 - 7671