Graph Regulation Network for Point Cloud Segmentation

被引:1
作者
Du, Zijin [1 ,2 ]
Liang, Jianqing [1 ,2 ]
Liang, Jiye [1 ,2 ]
Yao, Kaixuan
Cao, Feilong [3 ]
机构
[1] Shanxi Univ, Key Lab Computat Intelligence, Taiyuan 030006, Peoples R China
[2] Shanxi Univ, Sch Comp & Informat Technol, Chinese Informat Proc Minist Educ, Taiyuan 030006, Peoples R China
[3] China Jiliang Univ, Coll Sci, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph; heterophily; homophily; point cloud; segmentation;
D O I
10.1109/TPAMI.2024.3400402
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In point cloud, some regions typically exist nodes from multiple categories, i.e., these regions have both homophilic and heterophilic nodes. However, most existing methods ignore the heterophily of edges during the aggregation of the neighborhood node features, which inevitably mixes unnecessary information of heterophilic nodes and leads to blurred boundaries of segmentation. To address this problem, we model the point cloud as a homophilic-heterophilic graph and propose a graph regulation network (GRN) to produce finer segmentation boundaries. The proposed method can adaptively adjust the propagation mechanism with the degree of neighborhood homophily. Moreover, we build a prototype feature extraction module, which is utilised to mine the homophily features of nodes from the global prototype space. Theoretically, we prove that our convolution operation can constrain the similarity of representations between nodes based on their degree of homophily. Extensive experiments on fully and weakly supervised point cloud semantic segmentation tasks demonstrate that our method achieves satisfactory performance. Especially in the case of weak supervision, that is, each sample has only 1%-10% labeled points, the proposed method has a significant improvement in segmentation performance.
引用
收藏
页码:7940 / 7955
页数:16
相关论文
共 53 条
[1]   3D Semantic Parsing of Large-Scale Indoor Spaces [J].
Armeni, Iro ;
Sener, Ozan ;
Zamir, Amir R. ;
Jiang, Helen ;
Brilakis, Ioannis ;
Fischer, Martin ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1534-1543
[2]   Point Convolutional Neural Networks by Extension Operators [J].
Atzmon, Matan ;
Maron, Haggai ;
Lipman, Yaron .
ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (04)
[3]   PRA-Net: Point Relation-Aware Network for 3D Point Cloud Analysis [J].
Cheng, Silin ;
Chen, Xiwu ;
He, Xinwei ;
Liu, Zhe ;
Bai, Xiang .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :4436-4448
[4]   4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks [J].
Choy, Christopher ;
Gwak, JunYoung ;
Savarese, Silvio .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3070-3079
[5]   Point attention network for semantic segmentation of 3D point clouds [J].
Feng, Mingtao ;
Zhang, Liang ;
Lin, Xuefei ;
Gilani, Syed Zulqarnain ;
Mian, Ajmal .
PATTERN RECOGNITION, 2020, 107
[6]   Beyond Self-Attention: External Attention Using Two Linear Layers for Visual Tasks [J].
Guo, Meng-Hao ;
Liu, Zheng-Ning ;
Mu, Tai-Jiang ;
Hu, Shi-Min .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) :5436-5447
[7]   PCT: Point cloud transformer [J].
Guo, Meng-Hao ;
Cai, Jun-Xiong ;
Liu, Zheng-Ning ;
Mu, Tai-Jiang ;
Martin, Ralph R. ;
Hu, Shi-Min .
COMPUTATIONAL VISUAL MEDIA, 2021, 7 (02) :187-199
[8]   Deep Learning for 3D Point Clouds: A Survey [J].
Guo, Yulan ;
Wang, Hanyun ;
Hu, Qingyong ;
Liu, Hao ;
Liu, Li ;
Bennamoun, Mohammed .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) :4338-4364
[9]  
Hamilton WL, 2017, ADV NEUR IN, V30
[10]   Learning Semantic Segmentation of Large-Scale Point Clouds With Random Sampling [J].
Hu, Qingyong ;
Yang, Bo ;
Xie, Linhai ;
Rosa, Stefano ;
Guo, Yulan ;
Wang, Zhihua ;
Trigoni, Niki ;
Markham, Andrew .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) :8338-8354