Fuzzy Deep Learning for the Diagnosis of Alzheimer's Disease: Approaches and Challenges

被引:7
|
作者
Tanveer, M. [1 ]
Sajid, M. [1 ]
Akhtar, M. [1 ]
Quadir, A. [1 ]
Goel, T. [2 ]
Aimen, A. [1 ]
Mitra, S. [3 ]
Zhang, Y-d [4 ]
Lin, C. T. [5 ,6 ]
Ser, J. Del [7 ,8 ]
机构
[1] Indian Inst Technol Indore, Dept Math, OPTIMAL Res Lab, Indore, India
[2] Natl Inst Technol Silchar, Biomed Imaging Lab, Silchar 788010, India
[3] Indian Stat Inst, Machine Intelligence Unit, Kolkata 700108, India
[4] Univ Leicester, Sch Comp & Math Sci, Leicester LE17RH, England
[5] Univ Technol Sydney, Fac Engn & Informat Technol, GrapheneX UTS Human Centr Artificial Intelligence, Ultimo, NSW 2007, Australia
[6] Univ Technol Sydney, Australian Artificial Intelligence Inst, Fac Engn & Informat Technol, Ultimo, NSW 2007, Australia
[7] TECNALIA Basque Res & Technol Alliance BRTA, Mendaro 20850, Spain
[8] Univ Basque Country UPV EHU, Dept Commun Engn, Leioa 48940, Spain
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
Fuzzy logic; Deep learning; Fuzzy systems; Fuzzy sets; Reviews; Data models; Alzheimer's disease; Alzheimer's disease (AD); deep learning (DL); fuzzy deep learning (FDL); fuzzy logic (FL); machine learning (ML); neuroimaging; IMAGE SEGMENTATION; NEURAL-NETWORK; CLASSIFICATION; INFORMATION; ALGORITHM; SYSTEMS; LOGIC;
D O I
10.1109/TFUZZ.2024.3409412
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Alzheimer's disease (AD) is the leading neurodegenerative disorder and primary cause of dementia. Researchers are increasingly drawn to automated diagnosis of AD using neuroimaging analyses. Conventional deep learning (DL) models excel in constructing learning classifiers in early-stage AD diagnosis. However, they often struggle with AD diagnosis due to uncertainties stemming from unclear annotations by experts, challenges in data collection, such as data harmonization issues, and limitations in equipment resolution. These factors contribute to imprecise data, hindering accurate analysis, interpretation of obtained results, and understanding of complex symptoms. In response, the integration of fuzzy logic into DL, forming fuzzy deep learning (FDL), effectively manages imprecise data and provides interpretable insights, offering a valuable advancement in AD. Therefore, exploring recent advancements in integrating DL with fuzzy logic is crucial for improving AD diagnosis. In this review, we explore the contributions of fuzzy logic within FDL models, focusing on fuzzy-based image preprocessing, segmentation, and classification. Moreover, in exploring research directions, we discuss the possibility of the fusion of multimodal data with fuzzy logic, addressing challenges in AD diagnosis. Leveraging fuzzy logic and membership while integrating diverse datasets, such as genomics, proteomics, and metabolomics may provide an effective development of a DL classifier. In addition, fuzzy explainable DL promises more accurate and linguistically interpretable decision support systems for AD diagnosis. The primary objective of this article is to serve as a comprehensive and authoritative resource for newcomers, researchers, and clinicians interested in employing FDL models for AD diagnosis.
引用
收藏
页码:5477 / 5492
页数:16
相关论文
共 50 条
  • [1] Deep Learning in the EEG Diagnosis of Alzheimer's Disease
    Zhao, Yilu
    He, Lianghua
    COMPUTER VISION - ACCV 2014 WORKSHOPS, PT I, 2015, 9008 : 340 - 353
  • [2] Deep learning for Alzheimer's disease diagnosis: A survey
    Khojaste-Sarakhsi, M.
    Haghighi, Seyedhamidreza Shahabi
    Ghomi, S. M. T. Fatemi
    Marchiori, Elena
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2022, 130
  • [3] EARLY DIAGNOSIS OF ALZHEIMER'S DISEASE WITH DEEP LEARNING
    Liu, Siqi
    Liu, Sidong
    Cai, Weidong
    Pujol, Sonia
    Kikinis, Ron
    Feng, Dagan
    2014 IEEE 11TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2014, : 1015 - 1018
  • [4] Early Diagnosis of Alzheimer's Disease Using Deep Learning
    Ji, Huanhuan
    Liu, Zhenbing
    Yan, Wei Qi
    Klette, Reinhard
    ICCCV 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON CONTROL AND COMPUTER VISION, 2019, : 87 - 91
  • [5] Application of Deep Learning in Classification and Diagnosis of Alzheimer’s Disease
    Du, Yuzheng
    Cao, Hui
    Nie, Yongqi
    Wei, Dejian
    Feng, Yanyan
    Computer Engineering and Applications, 2024, 59 (03) : 49 - 65
  • [6] Deep Learning-Based Diagnosis of Alzheimer's Disease
    Saleem, Tausifa Jan
    Zahra, Syed Rameem
    Wu, Fan
    Alwakeel, Ahmed
    Alwakeel, Mohammed
    Jeribi, Fathe
    Hijji, Mohammad
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (05):
  • [7] Advancements in deep learning for Alzheimer's disease diagnosis: A comprehensive exploration and critical analysis of neuroimaging approaches
    Khan, Fakhri Alam
    Khan, Abdullah
    Imran, Muhammad
    Ahmad, Awais
    Jeon, Gwanggil
    EXPERT SYSTEMS, 2025, 42 (02)
  • [8] Application of Deep Learning in the Diagnosis of Alzheimer's and Parkinson's Disease: A Review
    Suganya, Asokan
    Aarthy, Seshadri Lakshminarayanan
    CURRENT MEDICAL IMAGING, 2024, 20
  • [9] Exploring Integration of Multimodal Deep Learning Approaches for Enhanced Alzheimer's Disease Diagnosis: A Review of Recent Literature
    Sonali Deshpande
    Nilima Kulkarni
    SN Computer Science, 5 (7)
  • [10] Iterative sparse and deep learning for accurate diagnosis of Alzheimer's disease
    Chen, Yuanyuan
    Xia, Yong
    PATTERN RECOGNITION, 2021, 116