Research advances on thermal runaway mechanism of lithium-ion batteries and safety improvement

被引:12
|
作者
He, Dan [1 ,2 ]
Wang, Jialin [3 ]
Peng, Yanjun [4 ]
Li, Baofeng [5 ]
Feng, Chang [5 ]
Shen, Lin [1 ,2 ]
Ma, Shouxiao [1 ,2 ]
机构
[1] Qinghai Univ, Intelligent Operat New Energy Based Power Syst, Xining 810016, Peoples R China
[2] Lab Ecol Protect & High Qual Dev Upper Yellow Rive, Xining 810016, Peoples R China
[3] Guangxi Power Grid Co Ltd, Nanning 530023, Guangxi, Peoples R China
[4] Guilin Power Supply Bur Guangxi Power Grid Co Ltd, Guilin 541002, Guangxi, Peoples R China
[5] Nanning Power Supply Bur Guangxi Power Grid Co Ltd, Nanning 530031, Guangxi, Peoples R China
关键词
Lithium-ion battery; Thermal runaway mechanism; Safety improvement; EXTINGUISHING AGENT; METAL-OXIDE; ELECTROLYTE; CARBON; FIRE; STABILITY; PERFORMANCE; REACTIVITY; CHARGE; CELLS;
D O I
10.1016/j.susmat.2024.e01017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lithium-ion batteries have found widespread applications in automotive, energy storage, and numerous other fields, attributed to their remarkable features such as high energy density, extended cycle life, and the absence of a memory effect. Nevertheless, these batteries are prone to various forms of abuse, including electrical, thermal, and mechanical stress, which can lead to internal short circuits and subsequently thermal runaway. This thermal runaway poses a significant threat to the safe operation of lithium-ion batteries. In this paper, we delve into the working principles of lithium-ion batteries and provide a comprehensive overview of the reaction characteristics of critical components, including the solid electrolyte interphase (SEI) film, electrolyte, electrode, and separator, during the thermal runaway process. It is found that the decomposition of SEI film and electrolyte occur at 80 and 100 degrees C, respectively, among which the chemical reactions between the negative electrode and the electrolyte could occur as well, while the diaphragm starts to undergo melting at 110 degrees C. It is crucial to highlight that various cathode materials exhibit distinct thermal decomposition temperatures, falling within a range of 150-300 degrees C. Notably, the melting of the diaphragm constitutes an endothermic reaction, efficiently absorbing a portion of heat, whereas all other reactions observed were exothermic. Furthermore, we conduct a detailed analysis and summary of how battery materials, battery state, external environmental conditions, and the initiating factors of thermal runaway impact voltage, temperature, and the type and concentration of gases produced during this process. Moreover, we summarize the current research efforts aimed at enhancing the safety performance of lithium-ion batteries, focusing on three key areas: thermal runaway prevention, thermal runaway early warning systems, and thermal runaway fire prevention technology. Finally, we identify the shortcomings of current technologies and provide insights into future prospects for addressing these challenges.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Mechanism of Thermal Runaway in Lithium-Ion Cells
    Galushkin, N. E.
    Yazvinskaya, N. N.
    Galushkin, D. N.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (07) : A1303 - A1308
  • [22] Modeling thermal runaway propagation of lithium-ion batteries under impacts of ceiling jet fire
    Wang, Gongquan
    Ping, Ping
    Zhang, Yue
    Zhao, Hengle
    Lv, Hongpeng
    Gao, Xinzeng
    Gao, Wei
    Kong, Depeng
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 175 : 524 - 540
  • [23] Effect of mechanical extrusion force on thermal runaway of lithium-ion batteries caused by flat heating
    Bai, Jinlong
    Wang, Zhirong
    Gao, Tianfeng
    Bai, Wei
    Wang, Junling
    JOURNAL OF POWER SOURCES, 2021, 507
  • [24] MODELING THERMAL RUNAWAY IN PRISMATIC LITHIUM-ION BATTERIES
    Khan, Shehzad
    Anwar, Sohail
    Casa, Jairo
    Hasnain, Muhammad
    Ahmed, Hossain
    Sezer, Hayri
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 10, 2023,
  • [25] Understanding the combustion characteristics and establishing a safety evaluation technique based on the overcharged thermal runaway of lithium-ion batteries
    Bi, Shansong
    Yu, Zhanglong
    Fang, Sheng
    Shen, Xueling
    Cui, Yi
    Yun, Fengling
    Shi, Dong
    Gao, Min
    Zhang, Hang
    Tang, Ling
    Zhang, Xin
    Fang, Yanyan
    Zhang, Xiangjun
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [26] Research Progress of Thermal Runaway and Safety for Lithium Metal Batteries
    Zhang, Shichao
    Shen, Zeyu
    Lu, Yingying
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (01) : 1 - 18
  • [27] Time Sequence Map for Interpreting the Thermal Runaway Mechanism of Lithium-Ion Batteries With LiNixCoyMnzO2 Cathode
    Feng, Xuning
    Zheng, Siqi
    He, Xiangming
    Wang, Li
    Wang, Yu
    Ren, Dongsheng
    Ouyang, Minggao
    FRONTIERS IN ENERGY RESEARCH, 2018, 6
  • [28] Research on overcharge mitigations and thermal runaway risk of 18650 lithium-ion batteries
    Yan, W. H.
    Huang, W. X.
    Yang, Y.
    Wei, Z. W.
    Zhen, H. S.
    Lin, Y.
    JOURNAL OF ENERGY STORAGE, 2025, 120
  • [29] Research on thermal runaway process of 18650 cylindrical lithium-ion batteries with different cathodes using cone calorimetry
    Liu, Changcheng
    Shen, Wanyu
    Liu, Xiaozhao
    Chen, Yanjun
    Ding, Chao
    Huang, Que
    JOURNAL OF ENERGY STORAGE, 2023, 64
  • [30] Research on stimulation responsive electrolytes from the perspective of thermal runaway in lithium-ion batteries: A review
    Zhou, Gang
    Niu, Chenxi
    Kong, Yang
    Wei, Zhikai
    Wang, Junling
    Huang, Qi
    Lu, Huaheng
    Zhang, Qi
    FUEL, 2024, 368