Eavesdropping Game Based on Multi-Agent Deep Reinforcement Learning

被引:0
|
作者
Guo, Delin [1 ]
Tang, Lan [1 ]
Yang, Lvxi [2 ,3 ]
Liang, Ying-Chang [2 ,3 ]
机构
[1] Nanjing University, Nanjing, China
[2] Southeast University, Nanjing, China
[3] University of Electronic Science and Technology of China, Chengdu, China
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Computation theory - Deep learning - Game theory - Jamming - Learning algorithms - Learning systems - Multi agent systems - Network layers - Security systems - Stochastic models - Stochastic systems - Transmitters
引用
收藏
相关论文
共 50 条
  • [1] Eavesdropping Game Based on Multi-Agent Deep Reinforcement Learning
    Guo, Delin
    Tang, Lan
    Yang, Lvxi
    Liang, Ying-Chang
    2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [2] Cooperative multi-agent game based on reinforcement learning
    Liu, Hongbo
    HIGH-CONFIDENCE COMPUTING, 2024, 4 (01):
  • [3] A Multi-agent Reinforcement Learning Algorithm Based on Stackelberg Game
    Cheng, Chi
    Zhu, Zhangqing
    Xin, Bo
    Chen, Chunlin
    2017 6TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS (DDCLS), 2017, : 727 - 732
  • [4] Deep reinforcement learning algorithm based on multi-agent parallelism and its application in game environment
    Liu, Chao
    Liu, Di
    ENTERTAINMENT COMPUTING, 2024, 50
  • [5] Multi-Agent Deep Reinforcement Learning Method for EV Charging Station Game
    Qian, Tao
    Shao, Chengcheng
    Li, Xuliang
    Wang, Xiuli
    Chen, Zhiping
    Shahidehpour, Mohammad
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (03) : 1682 - 1694
  • [6] Formation Control of Multi-agent Based on Deep Reinforcement Learning
    Pan, Chao
    Nian, Xiaohong
    Dai, Xunhua
    Wang, Haibo
    Xiong, Hongyun
    PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 1149 - 1159
  • [7] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [8] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [9] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    Artificial Intelligence Review, 2022, 55 : 895 - 943
  • [10] Deep Multi-Agent Reinforcement Learning: A Survey
    Liang X.-X.
    Feng Y.-H.
    Ma Y.
    Cheng G.-Q.
    Huang J.-C.
    Wang Q.
    Zhou Y.-Z.
    Liu Z.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2537 - 2557