Effects of long-term saline water irrigation on soil salinity and crop production of winter wheat-maize cropping system in the North China Plain: A case study

被引:1
|
作者
Liu, Zimeng [1 ,2 ]
Gao, Congshuai [1 ,2 ]
Yan, Zongzheng [1 ]
Shao, Liwei [1 ]
Chen, Suying [1 ]
Niu, Junfang [1 ]
Zhang, Xiying [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, Ctr Agr Resources Res, Key Lab Agr Water Resources, 286 Huaizhong Rd, Shijiazhuang 050021, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Salt accumulation; Salt leaching; Crop yield; Electrical conductivity in irrigation water; Irrigation timing; USE EFFICIENCY; SUPPLEMENTAL IRRIGATION; DEFICIT IRRIGATION; METABOLIC-ACTIVITY; SALT ACCUMULATION; SEED PRODUCTION; SPRING WHEAT; YIELD; EVAPOTRANSPIRATION; QUALITY;
D O I
10.1016/j.agwat.2024.109060
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Fresh water shortage is a major problem for grain production in the low plain around Bohai Sea in the North China Plain. Relative abundance of shallow saline groundwater could serve as an alternative water resource for use during dry seasons. A continuous 8-year field study was conducted from 2015 to 2023 to assess the effects of salt content in irrigation water on soil salt accumulation and crop production. Fresh water (FW) with electrical conductivity (EC) at 1.6 dS/m and three levels of saline water (SW) with EC at 4.7 (SW1), 6.3 (SW2) and 7.8 dS/ m (SW3) were used for irrigation. Results showed that a single irrigation event at the jointing stage of winter wheat increased grain production averagely by 18.6 %, 22.5 %, 12.9 % and 9.5 % compared with a rain-fed treatment (RF) under FW, SW1, SW2 and SW3, respectively. With an additional irrigation applied at flowering stage, both irrigations using FW increased the yield by 28.6 %, and both irrigations using SW2 increased the yield by 19.3 % compared with RF. Negative effects of salt on winter wheat overshadowed the positive effects of increased water supply under two irrigations both using SW. With an irrigation at maize sowing and the subsequent summer rainy season, the yield of maize following winter wheat was not affected by a one-time SW irrigation to the previous crop, but showed a 5.3 % yield reduction when two irrigations of SW were applied. There was no apparent salt accumulation in the top 1 m of the soil profile, but a slight increasing trend in the salt content in the 1-2 m layer of the soil profile under SW2 and SW3 irrigation. No apparent changes in soil physical properties were observed for continuous application of SW. It was suggested that SW with EC not exceeding 6.3 dS/m should be applied for a single irrigation during the winter wheat season. This practice could alleviate the fresh water shortage in this region and allow for the maintenance of a relatively stable yield of winter wheat and maize without the risk of salt accumulation in the soil.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Long-Term Effects of crop residual and Inorganic Fertilizers on Yield and Soil organic matter for a Winter Wheat-Maize System in North China Plain
    Yang, Zhichen
    Zhou, Liandi
    Lv, Yizhong
    Li, Hong
    PROGRESS IN ENVIRONMENTAL SCIENCE AND ENGINEERING (ICEESD2011), PTS 1-5, 2012, 356-360 : 2523 - +
  • [2] Long-term manuring and fertilization effects on soil organic carbon pools under a wheat-maize cropping system in North China Plain
    Gong, Wei
    Yan, Xiao-yuan
    Wang, Jing-yan
    Hu, Ting-xing
    Gong, Yuan-bo
    PLANT AND SOIL, 2009, 314 (1-2) : 67 - 76
  • [3] Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China Plain
    Liu, XJ
    Ju, XT
    Zhang, FS
    Pan, JR
    Christie, P
    FIELD CROPS RESEARCH, 2003, 83 (02) : 111 - 124
  • [4] Effects of rotational tillage on soil properties and water use efficiency in a wheat-maize cropping system on north china plain
    Wang, Xianliang
    Wu, Juanjuan
    Zhang, Xiangcai
    Xia, Lianming
    International Agricultural Engineering Journal, 2019, 28 (01): : 200 - 207
  • [5] Tillage and residue management for long-term wheat-maize cropping in the North China Plain: I. Crop yield and integrated soil fertility index
    Zhang, Xianfeng
    Zhu, Anning
    Xin, Xiuli
    Yang, Wenliang
    Zhang, Jiabao
    Ding, Shijie
    FIELD CROPS RESEARCH, 2018, 221 : 157 - 165
  • [6] Effects of different irrigation regimes on soil compaction in a winter wheat-summer maize cropping system in the North China Plain
    Liu, Xiuwei
    Feike, Til
    Shao, Liwei
    Sun, Hongyong
    Chen, Suying
    Zhang, Xiying
    CATENA, 2016, 137 : 70 - 76
  • [7] Effects of saline irrigation on soil salt accumulation and grain yield in the winter wheat-summer maize double cropping system in the low plain of North China
    Liu Xiu-wei
    Feike, Til
    Chen Su-ying
    Shao Li-wei
    Sun Hong-yong
    Zhang Xi-ying
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2016, 15 (12) : 2886 - 2898
  • [8] Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain
    Fang, Quanxiao
    Yu, Qiang
    Wang, Enli
    Chen, Yuhai
    Zhang, Guoliang
    Wang, Jing
    Li, Longhui
    PLANT AND SOIL, 2006, 284 (1-2) : 335 - 350
  • [9] Effects of saline irrigation on soil salt accumulation and grain yield in the winter wheat-summer maize double cropping system in the low plain of North China
    LIU Xiu-wei
    Til Feike
    CHEN Su-ying
    SHAO Li-wei
    SUN Hong-yong
    ZHANG Xi-ying
    Journal of Integrative Agriculture, 2016, 15 (12) : 2886 - 2898
  • [10] Crop Rotational Diversity Influences Wheat-Maize Production Through Soil Legacy Effects in the North China Plain
    Xiao, He
    van Es, H. M.
    Chen, Yuanquan
    Wang, Biao
    Zhao, Yingxing
    Sui, Peng
    INTERNATIONAL JOURNAL OF PLANT PRODUCTION, 2022, 16 (03) : 415 - 427