Increasing the strength of low-carbon steel after overheating

被引:1
作者
Rogachev, S. O. [1 ]
Nikulin, S. A. [1 ]
Khatkevich, V. M. [1 ]
Belov, V. A. [1 ]
Prosviryakov, A. S. [1 ]
Tabachkova, N. Yu. [1 ]
Zadorozhnyy, M. Yu. [2 ]
Turilina, V. Yu. [1 ]
机构
[1] Natl Univ Sci & Technol MISiS, Moscow, Russia
[2] Moscow Polytech Univ, Moscow, Russia
关键词
Low-carbon steel; Overheating; Widmanstatten structure; Strength; WIDMANSTATTEN FERRITE; MECHANICAL-PROPERTIES;
D O I
10.1016/j.matlet.2024.137510
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It was found that overheating (1200 degrees C, 4 h, slow cooling) of low-carbon low-alloy steel Fe-C-Cr-Mo leads to the formation of a Widmanstatten structure and an increase in strength by 1.2-1.5 times while maintaining high ductility. The relationship between changes in the steel mechanical properties and the Widmanstatten' dislocation structure features are discussed.
引用
收藏
页数:4
相关论文
共 50 条
[41]   Effect of drawing with shear on structure and properties of low-carbon steel [J].
Pashinskaya, Elena ;
Zavdoveev, Anatoly ;
Mironov, Sergey ;
Varyukhin, Victor ;
Maksakova, Anna .
INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2016, 107 (03) :239-244
[42]   Effect of thermomechanical processing on anisotropic behavior of low-carbon steel [J].
Shaabani, Alireza ;
Jamaati, Roohollah ;
Hosseinipour, Seyed Jamal .
RESULTS IN ENGINEERING, 2025, 25
[43]   A novel technique to produce trimodal microstructure in low-carbon steel [J].
Gholamalipour, Somayyeh ;
Jamaati, Roohollah ;
Hosseinipour, Seyed Jamal .
MATERIALIA, 2025, 39
[44]   DYNAMIC PROPERTIES OF LOW-CARBON STEEL AFTER LONG-TERM STORAGE [J].
A. M. Bragov ;
A. V. Kuznetsov ;
G. G. Savenkov ;
T. I. Sycheva ;
E. V. Shchukina .
Journal of Applied Mechanics and Technical Physics, 2021, 62 :105-109
[45]   DYNAMIC PROPERTIES OF LOW-CARBON STEEL AFTER LONG-TERM STORAGE [J].
Bragov, A. M. ;
Kuznetsov, A. V. ;
Savenkov, G. G. ;
Sycheva, T. I. ;
Shchukina, E. V. .
JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2021, 62 (01) :105-109
[46]   Method for detecting austenite grains in low-carbon steel after hot deformation [J].
Ferdian, D. ;
Ariati, M. ;
Norman, A. .
METAL SCIENCE AND HEAT TREATMENT, 2013, 55 (5-6) :281-284
[47]   Characterization of low-carbon steel after cold deformation based on Barkhausen noise [J].
Grum, J ;
Fefer, D ;
Zerovnik, P ;
Pecnik, B .
CIM '97 - COMPUTER INTEGRATED MANUFACTURING AND HIGH SPEED MACHINING, 1997, :A39-A47
[48]   Method for detecting austenite grains in low-carbon steel after hot deformation [J].
D. Ferdian ;
M. Ariati ;
A. Norman .
Metal Science and Heat Treatment, 2013, 55 :281-284
[49]   Microstructure and mechanical properties of medium-carbon steel bonded on low-carbon steel by explosive welding [J].
Borchers, C. ;
Lenz, M. ;
Deutges, M. ;
Klein, H. ;
Gaertner, F. ;
Hammerschmidt, M. ;
Kreye, H. .
MATERIALS & DESIGN, 2016, 89 :369-376
[50]   Microstructural evolution and mechanical properties of a low-carbon quenching and partitioning steel after partial and full austenitization [J].
Wansong Li ;
Hongye Gao ;
Hideharu Nakashima ;
Satoshi Hata ;
Wenhuai Tian .
InternationalJournalofMineralsMetallurgyandMaterials, 2016, 23 (08) :906-919