Increasing the strength of low-carbon steel after overheating

被引:0
作者
Rogachev, S. O. [1 ]
Nikulin, S. A. [1 ]
Khatkevich, V. M. [1 ]
Belov, V. A. [1 ]
Prosviryakov, A. S. [1 ]
Tabachkova, N. Yu. [1 ]
Zadorozhnyy, M. Yu. [2 ]
Turilina, V. Yu. [1 ]
机构
[1] Natl Univ Sci & Technol MISiS, Moscow, Russia
[2] Moscow Polytech Univ, Moscow, Russia
关键词
Low-carbon steel; Overheating; Widmanstatten structure; Strength; WIDMANSTATTEN FERRITE; MECHANICAL-PROPERTIES;
D O I
10.1016/j.matlet.2024.137510
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It was found that overheating (1200 degrees C, 4 h, slow cooling) of low-carbon low-alloy steel Fe-C-Cr-Mo leads to the formation of a Widmanstatten structure and an increase in strength by 1.2-1.5 times while maintaining high ductility. The relationship between changes in the steel mechanical properties and the Widmanstatten' dislocation structure features are discussed.
引用
收藏
页数:4
相关论文
共 50 条
[31]   Luders deformation of low-carbon steel [J].
Danilov V.I. ;
Gorbatenko V.V. ;
Zuev L.B. ;
Orlova D.V. ;
Danilova L.V. .
Danilov, V.I. (dvi@ispms.tsc.ru), 2017, Allerton Press Incorporation (47) :662-668
[32]   Effects of carbon content on the formation of nano/ultrafine grained low-carbon steel treated by martensite process [J].
Foroozmehr, F. ;
Najafizadeh, A. ;
Shafyei, A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (18) :5754-5758
[33]   Aging behavior of a copper-bearing high-strength low-carbon steel [J].
Shahriari, Babak ;
Vafaei, Reza ;
Sharifi, Ehsan Mohammad ;
Farmanesh, Khosro .
INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2018, 25 (04) :429-438
[34]   Synergistically achieving high strength and ductility in low-carbon steel sheet with bimodal microstructure [J].
Gholamalipour, Somayyeh ;
Jamaati, Roohollah ;
Hosseinipour, Seyed Jamal .
RESULTS IN ENGINEERING, 2025, 25
[35]   Strength and impact toughness of low-carbon steel with fibrous ultrafine-grained structure [J].
I. M. Safarov ;
A. V. Korznikov ;
R. M. Galeev ;
S. N. Sergeev ;
S. V. Gladkovskii ;
E. M. Borodin ;
I. Yu. Pyshmintsev .
The Physics of Metals and Metallography, 2014, 115 :295-302
[36]   Quality of Low-Carbon Steel as a Distribution of Pollution and Fatigue Strength Heated in Oxygen Converter [J].
Lipinski, Tomasz .
COATINGS, 2023, 13 (07)
[37]   Strength and Impact Toughness of Low-Carbon Steel with Fibrous Ultrafine-Grained Structure [J].
Safarov, I. M. ;
Korznikov, A. V. ;
Galeev, R. M. ;
Sergeev, S. N. ;
Gladkovskii, S. V. ;
Borodin, E. M. ;
Pyshmintsev, I. Yu. .
PHYSICS OF METALS AND METALLOGRAPHY, 2014, 115 (03) :295-302
[38]   Isochronal Phase Transformations of Low-Carbon High Strength Low Alloy Steel upon Continuous Cooling [J].
Huo, Jie ;
Liu, Yongchang ;
Zhang, Dantian ;
Yan, Zesheng ;
Gao, Zhiming .
STEEL RESEARCH INTERNATIONAL, 2013, 84 (02) :184-191
[39]   INFLUENCE OF SPD PROCESS ON LOW-CARBON STEEL MECHANICAL PROPERTIES [J].
Rusz, Stanislav ;
Hilser, Ondrej ;
Ochodek, Vladislav ;
Cada, Radek ;
Svec, Jiri ;
Szkandera, Pavel .
MM SCIENCE JOURNAL, 2019, 2019 :2910-2914
[40]   In situ observations of Widmanstatten ferrite formation in a low-carbon steel [J].
Phelan, D ;
Stanford, N ;
Dippenaar, R .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 407 (1-2) :127-134