Increasing the strength of low-carbon steel after overheating

被引:0
作者
Rogachev, S. O. [1 ]
Nikulin, S. A. [1 ]
Khatkevich, V. M. [1 ]
Belov, V. A. [1 ]
Prosviryakov, A. S. [1 ]
Tabachkova, N. Yu. [1 ]
Zadorozhnyy, M. Yu. [2 ]
Turilina, V. Yu. [1 ]
机构
[1] Natl Univ Sci & Technol MISiS, Moscow, Russia
[2] Moscow Polytech Univ, Moscow, Russia
关键词
Low-carbon steel; Overheating; Widmanstatten structure; Strength; WIDMANSTATTEN FERRITE; MECHANICAL-PROPERTIES;
D O I
10.1016/j.matlet.2024.137510
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It was found that overheating (1200 degrees C, 4 h, slow cooling) of low-carbon low-alloy steel Fe-C-Cr-Mo leads to the formation of a Widmanstatten structure and an increase in strength by 1.2-1.5 times while maintaining high ductility. The relationship between changes in the steel mechanical properties and the Widmanstatten' dislocation structure features are discussed.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Metal magnetic memory signals from surface of low-carbon steel and low-carbon alloyed steel
    Dong Li-hong
    Xu Bin-shi
    Dong Shi-yun
    Ye Ming-hui
    Chen Qun-zhi
    Wang Dan
    Yin Da-wei
    JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2007, 14 (01): : 24 - 27
  • [22] Metal magnetic memory signals from surface of low-carbon steel and low-carbon alloyed steel
    董丽虹
    徐滨士
    董世运
    叶明慧
    陈群志
    王丹
    尹大伟
    JournalofCentralSouthUniversityofTechnology, 2007, (01) : 24 - 27
  • [23] Metal magnetic memory signals from surface of low-carbon steel and low-carbon alloyed steel
    Li-hong Dong
    Bin-shi Xu
    Shi-yun Dong
    Ming-hui Ye
    Qun-zhi Chen
    Dan Wang
    Da-wei Yin
    Journal of Central South University of Technology, 2007, 14 : 24 - 27
  • [24] Fatigue failure of preliminarily deformed low-carbon steel
    Gushchin A.N.
    Gushchin, A. N. (gushinngtu@yandex.ru), 1600, Allerton Press Incorporation (44): : 232 - 235
  • [25] Modification of the Structure of Low-Carbon Pipe Steel by Helical Rolling, and the Increase in Its Strength and Cold Resistance
    Derevyagina, L. S.
    Gordienko, A. I.
    Pochivalov, Yu I.
    Smirnova, A. S.
    PHYSICS OF METALS AND METALLOGRAPHY, 2018, 119 (01) : 83 - 91
  • [26] Modification of the Structure of Low-Carbon Pipe Steel by Helical Rolling, and the Increase in Its Strength and Cold Resistance
    L. S. Derevyagina
    A. I. Gordienko
    Yu. I. Pochivalov
    A. S. Smirnova
    Physics of Metals and Metallography, 2018, 119 : 83 - 91
  • [27] Effect of processing methods on microhardness and acid corrosion behavior of low-carbon steel
    Zhang, Liuyan
    Ma, Aibin
    Jiang, Jinghua
    Jie, Xiaohua
    MATERIALS & DESIGN, 2015, 65 : 115 - 119
  • [28] Analysis of low-carbon steel/tantalum interface after explosive welding
    Kosec, B
    Kosec, L
    Petrovic, S
    Gontarev, V
    Kosec, G
    Gojic, M
    Skraba, P
    METALURGIJA, 2003, 42 (03): : 147 - 151
  • [29] An answer to the carbon cluster in low-temperature aged ferritic low-carbon steel
    Maeda, Takuya
    Kawahara, Yasuhito
    Kinoshita, Keisuke
    Sawada, Hideaki
    Takahashi, Jun
    Teranishi, Ryo
    Kaneko, Kenji
    MATERIALS CHARACTERIZATION, 2020, 159
  • [30] Semisolid extrusion of low-carbon steel
    Sugiyama, Sumio
    Li, Jingyuan
    Yanagimoto, Jun
    MATERIALS TRANSACTIONS, 2007, 48 (04) : 807 - 812