Increasing the strength of low-carbon steel after overheating

被引:0
作者
Rogachev, S. O. [1 ]
Nikulin, S. A. [1 ]
Khatkevich, V. M. [1 ]
Belov, V. A. [1 ]
Prosviryakov, A. S. [1 ]
Tabachkova, N. Yu. [1 ]
Zadorozhnyy, M. Yu. [2 ]
Turilina, V. Yu. [1 ]
机构
[1] Natl Univ Sci & Technol MISiS, Moscow, Russia
[2] Moscow Polytech Univ, Moscow, Russia
关键词
Low-carbon steel; Overheating; Widmanstatten structure; Strength; WIDMANSTATTEN FERRITE; MECHANICAL-PROPERTIES;
D O I
10.1016/j.matlet.2024.137510
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It was found that overheating (1200 degrees C, 4 h, slow cooling) of low-carbon low-alloy steel Fe-C-Cr-Mo leads to the formation of a Widmanstatten structure and an increase in strength by 1.2-1.5 times while maintaining high ductility. The relationship between changes in the steel mechanical properties and the Widmanstatten' dislocation structure features are discussed.
引用
收藏
页数:4
相关论文
共 50 条
[1]   An outstanding synergy of high strength and ductility in gradient structured low-carbon steel [J].
Shi, Yindong ;
Li, Bin ;
Gao, Fei ;
Wang, Lina ;
Qin, Feng ;
Liu, Hongji ;
Li, Shaoyuan .
MATERIALIA, 2019, 5
[2]   Low-temperature bainite in low-carbon steel [J].
Long, X. Y. ;
Zhang, F. C. ;
Kang, J. ;
Lv, B. ;
Shi, X. B. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 594 :344-351
[3]   Achieving ultrahigh strength by tuning the hierarchical structure of low-carbon martensitic steel [J].
Gao, Bo ;
Wang, Li ;
Liu, Yi ;
Liu, Junliang ;
Xiao, Lirong ;
Sui, Yudong ;
Sun, Wenwen ;
Chen, Xuefei ;
Zhou, Hao .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 881
[4]   Influence of Microalloying on the Strength and Corrosion of Low-Carbon Stainless Steel [J].
Guk V.V. ;
Branitskaya E.A. ;
Filippov G.A. .
Steel in Translation, 2018, 48 (1) :59-62
[5]   Microstructure and properties of low-carbon weld steel after thermomechanical strengthening [J].
V. M. Schastlivtsev ;
T. I. Tabatchikova ;
I. L. Yakovleva ;
S. Yu. Klyueva ;
A. A. Kruglova ;
E. I. Khlusova ;
V. V. Orlov .
The Physics of Metals and Metallography, 2012, 113 :480-488
[6]   Microstructure and properties of low-carbon weld steel after thermomechanical strengthening [J].
Schastlivtsev, V. M. ;
Tabatchikova, T. I. ;
Yakovleva, I. L. ;
Klyueva, S. Yu ;
Kruglova, A. A. ;
Khlusova, E. I. ;
Orlov, V. V. .
PHYSICS OF METALS AND METALLOGRAPHY, 2012, 113 (05) :480-488
[7]   Low-cycle fatigue strength of notched low-carbon steel materials [J].
Department of Mechanical Engineering, Kinki University, 3-4-1 Kowakae, Higashi-Osaka-shi, Osaka, 577-8502, Japan .
Nihon Kikai Gakkai Ronbunshu A, 2006, 11 (1744-1750) :1744-1750
[8]   High tensile ductility and high strength in ultrafine-grained low-carbon steel [J].
Wang, T. S. ;
Li, Z. ;
Zhang, B. ;
Zhang, X. J. ;
Deng, J. M. ;
Zhang, F. C. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (10-11) :2798-2801
[9]   A low-cost strategy to improve strength-ductility-toughness balance in a low-carbon steel [J].
Khorasani, Fatemeh ;
Jamaati, Roohollah ;
Aval, Hamed Jamshidi .
IRONMAKING & STEELMAKING, 2023, 50 (09) :1340-1351
[10]   Will future low-carbon schools in the UK have an overheating problem? [J].
Jenkins, D. P. ;
Peacock, A. D. ;
Banfill, P. F. G. .
BUILDING AND ENVIRONMENT, 2009, 44 (03) :490-501