Increasing the strength of low-carbon steel after overheating

被引:0
|
作者
Rogachev, S. O. [1 ]
Nikulin, S. A. [1 ]
Khatkevich, V. M. [1 ]
Belov, V. A. [1 ]
Prosviryakov, A. S. [1 ]
Tabachkova, N. Yu. [1 ]
Zadorozhnyy, M. Yu. [2 ]
Turilina, V. Yu. [1 ]
机构
[1] Natl Univ Sci & Technol MISiS, Moscow, Russia
[2] Moscow Polytech Univ, Moscow, Russia
关键词
Low-carbon steel; Overheating; Widmanstatten structure; Strength; WIDMANSTATTEN FERRITE; MECHANICAL-PROPERTIES;
D O I
10.1016/j.matlet.2024.137510
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It was found that overheating (1200 degrees C, 4 h, slow cooling) of low-carbon low-alloy steel Fe-C-Cr-Mo leads to the formation of a Widmanstatten structure and an increase in strength by 1.2-1.5 times while maintaining high ductility. The relationship between changes in the steel mechanical properties and the Widmanstatten' dislocation structure features are discussed.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] An outstanding synergy of high strength and ductility in gradient structured low-carbon steel
    Shi, Yindong
    Li, Bin
    Gao, Fei
    Wang, Lina
    Qin, Feng
    Liu, Hongji
    Li, Shaoyuan
    MATERIALIA, 2019, 5
  • [2] Low-temperature bainite in low-carbon steel
    Long, X. Y.
    Zhang, F. C.
    Kang, J.
    Lv, B.
    Shi, X. B.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 594 : 344 - 351
  • [3] Achieving ultrahigh strength by tuning the hierarchical structure of low-carbon martensitic steel
    Gao, Bo
    Wang, Li
    Liu, Yi
    Liu, Junliang
    Xiao, Lirong
    Sui, Yudong
    Sun, Wenwen
    Chen, Xuefei
    Zhou, Hao
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 881
  • [4] Influence of Microalloying on the Strength and Corrosion of Low-Carbon Stainless Steel
    Guk V.V.
    Branitskaya E.A.
    Filippov G.A.
    Steel in Translation, 2018, 48 (1) : 59 - 62
  • [5] Microstructure and properties of low-carbon weld steel after thermomechanical strengthening
    V. M. Schastlivtsev
    T. I. Tabatchikova
    I. L. Yakovleva
    S. Yu. Klyueva
    A. A. Kruglova
    E. I. Khlusova
    V. V. Orlov
    The Physics of Metals and Metallography, 2012, 113 : 480 - 488
  • [6] Microstructure and properties of low-carbon weld steel after thermomechanical strengthening
    Schastlivtsev, V. M.
    Tabatchikova, T. I.
    Yakovleva, I. L.
    Klyueva, S. Yu
    Kruglova, A. A.
    Khlusova, E. I.
    Orlov, V. V.
    PHYSICS OF METALS AND METALLOGRAPHY, 2012, 113 (05): : 480 - 488
  • [7] High tensile ductility and high strength in ultrafine-grained low-carbon steel
    Wang, T. S.
    Li, Z.
    Zhang, B.
    Zhang, X. J.
    Deng, J. M.
    Zhang, F. C.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (10-11): : 2798 - 2801
  • [8] A low-cost strategy to improve strength-ductility-toughness balance in a low-carbon steel
    Khorasani, Fatemeh
    Jamaati, Roohollah
    Aval, Hamed Jamshidi
    IRONMAKING & STEELMAKING, 2023, 50 (09) : 1340 - 1351
  • [9] Will future low-carbon schools in the UK have an overheating problem?
    Jenkins, D. P.
    Peacock, A. D.
    Banfill, P. F. G.
    BUILDING AND ENVIRONMENT, 2009, 44 (03) : 490 - 501
  • [10] An Exceptional Synergy of High Strength, Ductility and Toughness in a Gradient-Structured Low-Carbon Steel
    Yindong Shi
    Lina Wang
    Yulong Zhang
    Hailong Xie
    Yajun Zhao
    Journal of Materials Engineering and Performance, 2018, 27 : 5788 - 5793