Multi-Task Spatial-Temporal Transformer for Multi-Variable Meteorological Forecasting

被引:0
|
作者
Li, Tian-Bao [1 ]
Liu, An-An [1 ]
Song, Dan [1 ]
Li, Wen-Hui [1 ]
Zhang, Jing [1 ]
Wei, Zhi-Qiang [2 ]
Su, Yu-Ting [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Ocean Univ China, Sch Informat Sci & Engn, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
Forecasting; Task analysis; Transformers; Predictive models; Multitasking; Atmospheric modeling; Convolutional neural networks; Meteorological forecasting; multi-task learning; spatial-temporal transformer; CHANGE-POINT DETECTION; TIME-SERIES DATA; SEGMENTATION;
D O I
10.1109/TKDE.2024.3432599
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study delves into multi-variable meteorological spatial-temporal prediction, focusing on the simultaneous forecasting of key meteorological parameters such as temperature, wind speed, and atmospheric pressure. The core challenge of this task lies in identifying commonalities across different variables while capturing their unique features and the interactions among them. To address this, we propose a novel multi-task learning framework tailored for multi-variable meteorological forecasting. Our framework integrates a convolutional variable-specific visual representation module and a variable-interactive spatial-temporal inference module. The former extracts distinct variable information independently for each variable, while the latter employs a tri-level attention mechanism across space, time, and variables to uncover both commonalities and interactions among the variables. An adaptive multi-loss optimization strategy and a local information aggregation module are introduced to balance task optimization complexities and enhance representation stability. Comprehensive experiments across various meteorological prediction tasks confirm the effectiveness of our methods, showcasing superior performance over existing approaches.
引用
收藏
页码:8876 / 8888
页数:13
相关论文
共 50 条
  • [1] Multi-Scale Spatial-Temporal Transformer for Meteorological Variable Forecasting
    Li, Tian-Bao
    Su, Yu-Ting
    Song, Dan
    Li, Wen-Hui
    Wei, Zhi-Qiang
    Liu, An-An
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (03) : 2474 - 2486
  • [2] Multi-task Adversarial Spatial-Temporal Networks for Crowd Flow Prediction
    Wang, Senzhang
    Miao, Hao
    Chen, Hao
    Huang, Zhiqiu
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1555 - 1564
  • [3] Multi-Task Spatial-Temporal Graph Attention Network for Taxi Demand Prediction
    Wu, Mingming
    Zhu, Chaochao
    Chen, Lianliang
    2020 5TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND ARTIFICIAL INTELLIGENCE (ICMAI 2020), 2020, : 224 - 228
  • [4] ADST: Forecasting Metro Flow Using Attention-Based Deep Spatial-Temporal Networks with Multi-Task Learning
    Jia, Hongwei
    Luo, Haiyong
    Wang, Hao
    Zhao, Fang
    Ke, Qixue
    Wu, Mingyao
    Zhao, Yunyun
    SENSORS, 2020, 20 (16) : 1 - 23
  • [5] Multi-Task Spatial-Temporal Graph Auto-Encoder for Hand Motion Denoising
    Zhou, Kanglei
    Shum, Hubert P. H.
    Li, Frederick W. B.
    Liang, Xiaohui
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (10) : 6754 - 6769
  • [6] Multi-Task Learning and Temporal-Fusion-Transformer-Based Forecasting of Building Power Consumption
    Ji, Wenxian
    Cao, Zeyu
    Li, Xiaorun
    ELECTRONICS, 2023, 12 (22)
  • [7] Deep Multi-Task Learning for Spatio-Temporal Incomplete Qualitative Event Forecasting
    Chowdhury, Tanmoy
    Gao, Yuyang
    Zhao, Liang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 7913 - 7926
  • [8] Asymmetric Multi-Task Learning for Interpretable Gaze-Driven Grasping Action Forecasting
    Gonzalez-Diaz, Ivan
    Molina-Moreno, Miguel
    Benois-Pineau, Jenny
    de Rugy, Aymar
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (12) : 7517 - 7530
  • [9] Multi-Task Learning for Spatio-Temporal Event Forecasting
    Zhao, Liang
    Sun, Qian
    Ye, Jieping
    Chen, Feng
    Lu, Chang-Tien
    Ramakrishnan, Naren
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 1503 - 1512
  • [10] Multi-Task Learning With Multi-Query Transformer for Dense Prediction
    Xu, Yangyang
    Li, Xiangtai
    Yuan, Haobo
    Yang, Yibo
    Zhang, Lefei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (02) : 1228 - 1240