Genus two curves with everywhere good reduction over quadratic fields

被引:0
作者
Dąbrowski, Andrzej [1 ]
Sadek, Mohammad [2 ]
机构
[1] Institute of Mathematics, University of Szczecin, Wielkopolska 15, Szczecin,70-451, Poland
[2] Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, İstanbul,34956, Turkey
来源
arXiv | 2021年
关键词
D O I
暂无
中图分类号
学科分类号
摘要
35
引用
收藏
相关论文
共 50 条
  • [31] Generating genus two hyperelliptic curves over large characteristic finite fields
    Department of Mathematics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
    Lect. Notes Comput. Sci., 1600, (536-553):
  • [32] Generating Genus Two Hyperelliptic Curves over Large Characteristic Finite Fields
    Satoh, Takakazu
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2009, 2009, 5479 : 536 - 553
  • [33] Torsion of Q-curves over quadratic fields
    Le Fourn, Samuel
    Najman, Filip
    MATHEMATICAL RESEARCH LETTERS, 2020, 27 (01) : 209 - 225
  • [34] Elliptic curves over real quadratic fields are modular
    Freitas, Nuno
    Le Hung, Bao V.
    Siksek, Samir
    INVENTIONES MATHEMATICAE, 2015, 201 (01) : 159 - 206
  • [35] Software Implementation of Koblitz Curves over Quadratic Fields
    Oliveira, Thomaz
    Lopez, Julio
    Rodriguez-Henriquez, Francisco
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2016, 2016, 9813 : 259 - 279
  • [36] Torsion of rational elliptic curves over quadratic fields
    Enrique González-Jiménez
    José M. Tornero
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2014, 108 : 923 - 934
  • [37] Torsion of rational elliptic curves over quadratic fields
    Gonzalez-Jimenez, Enrique
    Tornero, Jose M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (02) : 923 - 934
  • [38] Elliptic curves over real quadratic fields are modular
    Nuno Freitas
    Bao V. Le Hung
    Samir Siksek
    Inventiones mathematicae, 2015, 201 : 159 - 206
  • [39] Torsion groups of elliptic curves over quadratic fields
    Kamienny, Sheldon
    Najman, Filip
    ACTA ARITHMETICA, 2012, 152 (03) : 291 - 305
  • [40] Fundamental groups and good reduction criteria for curves over positive characteristic local fields
    Lazda, Christopher
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2017, 29 (03): : 755 - 798