Simulation of Nanoparticle Implantation into Material Using Laser Shock Waves

被引:0
作者
Sakhvadze, G. Zh. [1 ]
Sakhvadze, G. G. [1 ]
机构
[1] Russian Acad Sci, Mech Engn Res Inst, Moscow, Russia
关键词
nanoparticle implantation; laser shock wave; modeling; finite element method; implantation depth; MECHANICAL-PROPERTIES; AL SURFACE; ALUMINUM; MICROSTRUCTURE; MODEL;
D O I
10.1134/S1052618824701267
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A new technology called laser shock wave-assisted nanoparticle implantation into the surface layer of a light alloy is considered. Finite element and analytical models have been developed to determine the implantation depth of WC nanoparticles into an aluminum substrate during laser shock wave implantation of nanoparticles. Two modes are considered: a single application of nanoparticle implantation technology into the surface layer, and a sequential double application of nanoparticle implantation into the surface layer. The obtained results showed that in both modes studied, nanoparticles are implanted into the surface layer of the 5A06 aluminum alloy with different intensities. It is shown that the implantation depths of nanoparticles calculated using the finite element method and the analytical model are in good agreement with the experimental data, which confirms the reliability of the developed implantation depth models.
引用
收藏
页码:609 / 616
页数:8
相关论文
共 50 条
  • [41] Finite element simulation of guided waves generated by laser pulses
    Liu, Wenyang
    Hong, Jung-Wuk
    [J]. SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2012, PTS 1 AND 2, 2012, 8345
  • [42] Simulation of thermal degradation in a composite material using phase field method
    Abdoussalam, M.
    Nait-Ali, A.
    Batiot, B.
    Calvat, M.
    Halm, D.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2025, 261
  • [43] Propagation of shock waves and fracture in the Al-Cu compsite: Numberical simulation
    Pogorelko, V. V.
    Mayer, A. E.
    [J]. XXX INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER (ELBRUS 2015), 2015, 653
  • [44] Numerical Simulation of Ignition and Combustion of Boron Gas Suspension behind Shock Waves
    Syrovaten, A. A.
    Bedarev, I. A.
    Tropin, D. A.
    [J]. COMBUSTION EXPLOSION AND SHOCK WAVES, 2024, 60 (03) : 306 - 317
  • [45] A study on super-speed forming of metal sheet by laser shock waves
    Zhou, JZ
    Yang, JC
    Zhang, YK
    Zhou, M
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2002, 129 (1-3) : 241 - 244
  • [46] Structural analysis and atomic simulation of Ag/BN nanoparticle hybrids obtained by Ag ion implantation
    Firestein, K. L.
    Kvashnin, D. G.
    Sheveyko, A. N.
    Sukhorukova, I. V.
    Kovalskii, A. M.
    Matveev, A. T.
    Lebedev, O. I.
    Sorokin, P. B.
    Golberg, D.
    Shtansky, D. V.
    [J]. MATERIALS & DESIGN, 2016, 98 : 167 - 173
  • [47] Experimental study of shock waves induced by a nanosecond pulsed laser in copper target
    Wang Ji-Xun
    Gao Xun
    Song Chao
    Lin Jing-Quan
    [J]. ACTA PHYSICA SINICA, 2015, 64 (04)
  • [48] Ion kinetic effects on the formation of intense laser-driven shock waves
    Xu, Y. P.
    Zhang, W. S.
    Yao, P. L.
    Liu, Q. K.
    Luo, H.
    Li, S.
    Cai, H. B.
    Zhu, S. P.
    [J]. PHYSICS OF PLASMAS, 2024, 31 (05)
  • [49] Picosecond laser-induced shock waves patterning on Shape Memory Alloys
    Abdisatarov, Bektur
    Saidjafarzoda, Ilhom
    Karaca, Haluk E.
    Er, Ali O.
    [J]. FRONTIERS IN ULTRAFAST OPTICS: BIOMEDICAL, SCIENTIFIC, AND INDUSTRIAL APPLICATIONS XX, 2020, 11270
  • [50] Elastoplastic and Polymorphic Transformations in Iron Films Loaded by Ultrashort Laser Shock Waves
    Murzov, S. A.
    Ashitkov, S., I
    Struleva, E., V
    Komarov, P. S.
    Khokhlov, V. A.
    Zhakhovskii, V. V.
    Inogamov, N. A.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2022, 134 (03) : 263 - 276