A Kalman-Koopman LQR Control Approach to Robotic Systems

被引:5
作者
Zhao, Dongdong [1 ]
Yang, Xiaodi [1 ]
Li, Yichang [1 ]
Xu, Li [2 ]
She, Jinhua [3 ]
Yan, Shi [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China
[2] Akita Prefectural Univ, Dept Intelligent Mechatron, Akita 0100146, Japan
[3] Tokyo Univ Technol, Sch Engn, Hachioji, Tokyo 1920982, Japan
基金
中国国家自然科学基金;
关键词
Kalman filter; Koopman operator; linear quadratic regulator; OUTPUT-FEEDBACK CONTROL; OPERATOR;
D O I
10.1109/TIE.2024.3379674
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents a Kalman-Koopman linear quadratic regulator (KKLQR) control approach to robotic systems. In the proposed approach, an optimal Koopman modeling method based on neural networks, in which continuous Koopman eigenfunctions are constructed without requiring any predefined dictionary, is proposed to obtain approximated linear models with high precision for robotic systems. Specifically, the linear model is constructed through a multistep prediction error minimization, which enables a long-term prediction capability. Furthermore, the Kalman filter is employed to alleviate the effects of disturbances in the KKLQR control approach. Experimental results show that the proposed KKLQR control approach achieves better prediction and control performance than other existing representative methods.
引用
收藏
页码:16047 / 16056
页数:10
相关论文
共 29 条
  • [1] Axler S., 1997, LINEAR ALGEBRA DONE, VSecond
  • [2] Dynamic Control of Soft Robotic Arm: A Simulation Study
    Azizkhani, Milad
    Godage, Isuru S.
    Chen, Yue
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 3584 - 3591
  • [3] Data-Driven Control of Soft Robots Using Koopman Operator Theory
    Bruder, Daniel
    Fu, Xun
    Gillespie, R. Brent
    Remy, C. David
    Vasudevan, Ram
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (03) : 948 - 961
  • [4] Brunton SL, 2019, DATA-DRIVEN SCIENCE AND ENGINEERING: MACHINE LEARNING, DYNAMICAL SYSTEMS, AND CONTROL, P117
  • [5] Closed-form Estimates of the LQR Gain From Finite Data
    Celi, Federico
    Baggio, Giacomo
    Pasqualetti, Fabio
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 4016 - 4021
  • [6] Sliding-Mode Output Feedback Control Design
    Choi, Han Ho
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008, 55 (11) : 4047 - 4054
  • [7] Data-Driven Economic NMPC Using Reinforcement Learning
    Gros, Sebastien
    Zanon, Mario
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (02) : 636 - 648
  • [8] Control of soft robots with inertial dynamics
    Haggerty, David A.
    Banks, Michael J.
    Kamenar, Ervin
    Cao, Alan B.
    Curtis, Patrick C.
    Mezic, Igor
    Hawkes, Elliot W.
    [J]. SCIENCE ROBOTICS, 2023, 8 (81)
  • [9] Komeno N, 2022, 2022 61ST ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS (SICE), P333, DOI 10.23919/SICE56594.2022.9905758
  • [10] Optimal Construction of Koopman Eigenfunctions for Prediction and Control
    Korda, Milan
    Mezic, Igor
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (12) : 5114 - 5129