Active aeroelastic flutter control of supersonic smart variable stiffness composite panels using layerwise models

被引:6
作者
Moreira, J. A. [1 ]
Moleiro, F. [1 ]
Araujo, A. L. [1 ]
Pagani, A. [2 ]
机构
[1] Univ Lisbon, IDMEC, Inst Super Tecn, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
[2] Politecn Torino, Dept Mech & Aerosp Engn, MUL2, Corso Duca Abruzzi 24, I-10129 Turin, Italy
基金
欧洲研究理事会;
关键词
Aeroelastic control; Panel flutter; Piezoelectric composite panels; Variable stiffness composites; Layerwise theory; PINCHED PANELS; PLATES; OPTIMIZATION; VIBRATION; FLOW;
D O I
10.1016/j.compstruct.2024.118287
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This work focuses on the layerwise finite element modelling and active aeroelastic flutter control of smart variable stiffness laminated composite panels with surface bonded piezoelectric layers/patches under supersonic airflow. The proposed aero-electro-elastic models make use of the First- and Third-order Shear Deformation Theories, along with a linear through-thickness distribution of the electric potential, whereas the effect of the supersonic airflow is described by the First-order Piston Theory. Numerical applications of simply supported smart composite panels with either curvilinear or unidirectional fibres are provided for the accuracy assessment of the proposed models predictive capabilities, considering various side-to-thickness ratios and control conditions. The effect of proportional control on the aeroelastic flutter response is discussed for both airflow along the x-axis and yawed airflow, in addition to three different placement configurations of the piezoelectric patches.
引用
收藏
页数:17
相关论文
共 49 条
[31]   Fundamental Frequency Layer-Wise Optimization of Tow-Steered Composites Considering Gaps and OverlapsFundamental Frequency Layer-Wise Optimization of Tow-Steered…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ldots $$\end{document}A. Pagani et al. [J].
A. Pagani ;
A. Racionero Sánchez-Majano ;
D. Zamani ;
M. Petrolo ;
E. Carrera .
Aerotecnica Missili & Spazio, 2025, 104 (2) :135-151
[32]   Thermal stress analysis of variable angle tow composite plates through high-order structural models [J].
Pagani, A. ;
Zappino, E. ;
Bracaglia, F. ;
Masia, R. ;
Carrera, E. .
COMPOSITE STRUCTURES, 2024, 327
[33]   Stochastic stress analysis and failure onset of variable angle tow laminates affected by spatial fibre variations [J].
Pagani, A. ;
Sanchez-Majano, A. R. .
COMPOSITES PART C: OPEN ACCESS, 2021, 4
[34]  
Reddy J.N., 2003, Mechanics of laminated composite plates and shells: theory and analysis
[35]   A unified formulation for finite element analysis of piezoelectric adaptive plates [J].
Robaldo, A. ;
Carrera, E. ;
Benjeddou, A. .
COMPUTERS & STRUCTURES, 2006, 84 (22-23) :1494-1505
[36]   Buckling and Fundamental Frequency Optimization of Tow-Steered Composites Using Layerwise Structural Models [J].
Sanchez-Majano, Alberto Racionero ;
Pagani, Alfonso .
AIAA JOURNAL, 2023, 61 (09) :4149-4163
[37]   Accurate Stress Analysis of Variable Angle Tow Shells by High-Order Equivalent-Single-Layer and Layer-Wise Finite Element Models [J].
Sanchez-Majano, Alberto Racionero ;
Azzara, Rodolfo ;
Pagani, Alfonso ;
Carrera, Erasmo .
MATERIALS, 2021, 14 (21)
[38]   Buckling Sensitivity of Tow-Steered Plates Subjected to Multiscale Defects by High-Order Finite Elements and Polynomial Chaos Expansion [J].
Sanchez-Majano, Alberto Racionero ;
Pagani, Alfonso ;
Petrolo, Marco ;
Zhang, Chao .
MATERIALS, 2021, 14 (11)
[39]   Eigenfrequencies of prestressed variable stiffness composite shells [J].
Sciascia, Giuseppe ;
Oliveri, Vincenzo ;
Weaver, Paul M. .
COMPOSITE STRUCTURES, 2021, 270
[40]   Review on the use of piezoelectric materials for active vibration, noise, and flow control [J].
Shivashankar, P. ;
Gopalakrishnan, S. .
SMART MATERIALS AND STRUCTURES, 2020, 29 (05)