Taking a deep dive with active learning for drug discovery

被引:1
作者
Fralish, Zachary [1 ]
Reker, Daniel [1 ]
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
来源
NATURE COMPUTATIONAL SCIENCE | 2024年 / 4卷 / 10期
关键词
Compendex;
D O I
10.1038/s43588-024-00704-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Active machine learning is employed in academia and industry to support drug discovery. A recent study unravels the factors that influence a deep learning models' ability to guide iterative discovery.
引用
收藏
页码:727 / 728
页数:2
相关论文
共 11 条
  • [1] Limitations of representation learning in small molecule property prediction
    Dias, Ana Laura
    Bustillo, Latimah
    Rodrigues, Tiago
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [2] Eisenstein M, 2020, NAT BIOTECHNOL, V38, P512, DOI 10.1038/s41587-020-0521-4
  • [3] Finding the most potent compounds using active learning on molecular pairs
    Fralish, Zachary
    Reker, Daniel
    [J]. BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, 2024, 20 : 2152 - 2162
  • [4] How successful are AI-discovered drugs in clinical trials? A first analysis and emerging lessons
    Jayatunga, Madura K. P.
    Ayers, Margaret
    Bruens, Lotte
    Jayanth, Dhruv
    Meier, Christoph
    [J]. DRUG DISCOVERY TODAY, 2024, 29 (06)
  • [5] Pursuing a Prospective Perspective
    Kearnes, Steven
    [J]. TRENDS IN CHEMISTRY, 2021, 3 (02): : 77 - 79
  • [6] Yoked learning in molecular data science
    Li, Zhixiong
    Xiang, Yan
    Wen, Yujing
    Reker, Daniel
    [J]. ARTIFICIAL INTELLIGENCE IN THE LIFE SCIENCES, 2024, 5
  • [7] Characterizing emerging companies in computational drug development
    Markey, Chloe
    Croset, Samuel
    Woolley, Olivia Ruth
    Buldun, Can Martin
    Koch, Christian
    Koller, Daniel
    Reker, Daniel
    [J]. NATURE COMPUTATIONAL SCIENCE, 2024, 4 (02): : 96 - 103
  • [8] Parsing clinical success rates
    Mullard, Asher
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2016, 15 (07) : 447 - 447
  • [9] Reker Daniel, 2019, Drug Discov Today Technol, V32-33, P73, DOI 10.1016/j.ddtec.2020.06.001
  • [10] A Survey of Deep Active Learning
    Ren, Pengzhen
    Xiao, Yun
    Chang, Xiaojun
    Huang, Po-Yao
    Li, Zhihui
    Gupta, Brij B.
    Chen, Xiaojiang
    Wang, Xin
    [J]. ACM COMPUTING SURVEYS, 2022, 54 (09)