GPD-Nodule: A Lightweight Lung Nodule Detection and Segmentation Framework on Computed Tomography Images Using Uniform Superpixel Generation

被引:0
作者
Modak, Sudipta [1 ]
Abdel-Raheem, Esam [1 ]
Rueda, Luis [2 ]
机构
[1] Univ Windsor, Dept Elect & Comp Engn, Windsor, ON N9B 3P4, Canada
[2] Univ Windsor, Sch Comp Sci, Windsor, ON N9B 3P4, Canada
来源
IEEE ACCESS | 2024年 / 12卷
基金
加拿大自然科学与工程研究理事会;
关键词
Lung; Computed tomography; Computer architecture; YOLO; Training; Image segmentation; Lung cancer; Proposals; Biomedical imaging; Graph neural networks; Lung nodule detection; graph neural networks; superpixel generation; object detection; binary classification;
D O I
10.1109/ACCESS.2024.3485000
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lung nodule detection is key in early diagnosis of lung cancer. Expert radiologists dedicate a significant amount of time and effort to detecting such nodules manually by going through computed tomography scan images slice by slice. This endeavor results in the slow processing of radiological images and possible misdiagnosis due to nodules being tiny by nature. In this paper, we introduce a two-step automatic computer-aided nodule detection method that encompasses a novel uniform superpixel generation algorithm, namely, equivalent patchwise iterative agglomerative clustering. This superpixel generation algorithm can generate the same number of superpixels for every image making it suitable for training neural networks. This method is then coupled with a novel variant of graph neural networks, namely, the curtailed residual nested superpixel propagation network, and an unsupervised region proposal method, namely, pixel nesting region proposal mechanism to detect nodules with high accuracy. The results show an accelerated training process compared to state-of-the-art convolutional neural networks and good generalization capability. Furthermore, the proposed method displays a significant reduction in trainable parameters while achieving high performance in the detection and segmentation of nodules on the Lung Image Database Consortium and Image Database Resource Initiative dataset.
引用
收藏
页码:154933 / 154948
页数:16
相关论文
共 53 条
  • [1] SLIC Superpixels Compared to State-of-the-Art Superpixel Methods
    Achanta, Radhakrishna
    Shaji, Appu
    Smith, Kevin
    Lucchi, Aurelien
    Fua, Pascal
    Suesstrunk, Sabine
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) : 2274 - 2281
  • [2] Hierarchical approach for pulmonary-nodule identification from CT images using YOLO model and a 3D neural network classifier
    Ahmadyar, Yashar
    Kamali-Asl, Alireza
    Arabi, Hossein
    Samimi, Rezvan
    Zaidi, Habib
    [J]. RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2024, 17 (01) : 124 - 134
  • [3] The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
    Armato, Samuel G., III
    McLennan, Geoffrey
    Bidaut, Luc
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    Zhao, Binsheng
    Aberle, Denise R.
    Henschke, Claudia I.
    Hoffman, Eric A.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Biancardi, Alberto M.
    Bland, Peyton H.
    Brown, Matthew S.
    Engelmann, Roger M.
    Laderach, Gary E.
    Max, Daniel
    Pais, Richard C.
    Qing, David P-Y
    Roberts, Rachael Y.
    Smith, Amanda R.
    Starkey, Adam
    Batra, Poonam
    Caligiuri, Philip
    Farooqi, Ali
    Gladish, Gregory W.
    Jude, C. Matilda
    Munden, Reginald F.
    Petkovska, Iva
    Quint, Leslie E.
    Schwartz, Lawrence H.
    Sundaram, Baskaran
    Dodd, Lori E.
    Fenimore, Charles
    Gur, David
    Petrick, Nicholas
    Freymann, John
    Kirby, Justin
    Hughes, Brian
    Casteele, Alessi Vande
    Gupte, Sangeeta
    Sallam, Maha
    Heath, Michael D.
    Kuhn, Michael H.
    Dharaiya, Ekta
    Burns, Richard
    Fryd, David S.
    [J]. MEDICAL PHYSICS, 2011, 38 (02) : 915 - 931
  • [4] Aydoghmishi F.M., 2023, P INT C MICR ICM DEC, P113, DOI 10.1109/ICM60448.2023.10378939
  • [5] Superpixel Image Classification with Graph Convolutional Neural Networks Based on Learnable Positional Embedding
    Bae, Ji-Hun
    Yu, Gwang-Hyun
    Lee, Ju-Hwan
    Vu, Dang Thanh
    Anh, Le Hoang
    Kim, Hyoung-Gook
    Kim, Jin-Young
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [6] Linear Spectral Clustering Superpixel
    Chen, Jiansheng
    Li, Zhengqin
    Huang, Bo
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (07) : 3317 - 3330
  • [7] Revisiting RCNN: On Awakening the Classification Power of Faster RCNN
    Cheng, Bowen
    Wei, Yunchao
    Shi, Honghui
    Feris, Rogerio
    Xiong, Jinjun
    Huang, Thomas
    [J]. COMPUTER VISION - ECCV 2018, PT 15, 2018, 11219 : 473 - 490
  • [8] Xception: Deep Learning with Depthwise Separable Convolutions
    Chollet, Francois
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1800 - 1807
  • [9] Artificial intelligence: A critical review of applications for lung nodule and lung cancer
    de Margerie-Mellon, Constance
    Chassagnon, Guillaume
    [J]. DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2023, 104 (01) : 11 - 17
  • [10] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848