GPD-Nodule: A Lightweight Lung Nodule Detection and Segmentation Framework on Computed Tomography Images Using Uniform Superpixel Generation

被引:1
作者
Modak, Sudipta [1 ]
Abdel-Raheem, Esam [1 ]
Rueda, Luis [2 ]
机构
[1] Univ Windsor, Dept Elect & Comp Engn, Windsor, ON N9B 3P4, Canada
[2] Univ Windsor, Sch Comp Sci, Windsor, ON N9B 3P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Lung; Computed tomography; Computer architecture; YOLO; Training; Image segmentation; Lung cancer; Proposals; Biomedical imaging; Graph neural networks; Lung nodule detection; graph neural networks; superpixel generation; object detection; binary classification;
D O I
10.1109/ACCESS.2024.3485000
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lung nodule detection is key in early diagnosis of lung cancer. Expert radiologists dedicate a significant amount of time and effort to detecting such nodules manually by going through computed tomography scan images slice by slice. This endeavor results in the slow processing of radiological images and possible misdiagnosis due to nodules being tiny by nature. In this paper, we introduce a two-step automatic computer-aided nodule detection method that encompasses a novel uniform superpixel generation algorithm, namely, equivalent patchwise iterative agglomerative clustering. This superpixel generation algorithm can generate the same number of superpixels for every image making it suitable for training neural networks. This method is then coupled with a novel variant of graph neural networks, namely, the curtailed residual nested superpixel propagation network, and an unsupervised region proposal method, namely, pixel nesting region proposal mechanism to detect nodules with high accuracy. The results show an accelerated training process compared to state-of-the-art convolutional neural networks and good generalization capability. Furthermore, the proposed method displays a significant reduction in trainable parameters while achieving high performance in the detection and segmentation of nodules on the Lung Image Database Consortium and Image Database Resource Initiative dataset.
引用
收藏
页码:154933 / 154948
页数:16
相关论文
共 53 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]   Hierarchical approach for pulmonary-nodule identification from CT images using YOLO model and a 3D neural network classifier [J].
Ahmadyar, Yashar ;
Kamali-Asl, Alireza ;
Arabi, Hossein ;
Samimi, Rezvan ;
Zaidi, Habib .
RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2024, 17 (01) :124-134
[3]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[4]  
Aydoghmishi F. M., 2023, 2023 INT C MICR ICM, P113
[5]   Superpixel Image Classification with Graph Convolutional Neural Networks Based on Learnable Positional Embedding [J].
Bae, Ji-Hun ;
Yu, Gwang-Hyun ;
Lee, Ju-Hwan ;
Vu, Dang Thanh ;
Anh, Le Hoang ;
Kim, Hyoung-Gook ;
Kim, Jin-Young .
APPLIED SCIENCES-BASEL, 2022, 12 (18)
[6]   Linear Spectral Clustering Superpixel [J].
Chen, Jiansheng ;
Li, Zhengqin ;
Huang, Bo .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (07) :3317-3330
[7]   Revisiting RCNN: On Awakening the Classification Power of Faster RCNN [J].
Cheng, Bowen ;
Wei, Yunchao ;
Shi, Honghui ;
Feris, Rogerio ;
Xiong, Jinjun ;
Huang, Thomas .
COMPUTER VISION - ECCV 2018, PT 15, 2018, 11219 :473-490
[8]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[9]   Artificial intelligence: A critical review of applications for lung nodule and lung cancer [J].
de Margerie-Mellon, Constance ;
Chassagnon, Guillaume .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2023, 104 (01) :11-17
[10]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848