Advances in sodium-ion battery cathode materials: exploring chemistry, reaction mechanisms, and prospects for next-generation energy storage systems

被引:3
作者
Zhang, Han [1 ]
Wang, Liguang [2 ]
Zuo, Pengjian [3 ]
机构
[1] Chongqing Univ Sci & Technol, Coll Mat & New Energy, Chongqing 401331, Peoples R China
[2] Zhejiang Univ, Coll Chem & Biol Engn, Hangzhou 310058, Peoples R China
[3] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers &, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
PRUSSIAN BLUE ANALOGS; POSITIVE-ELECTRODE MATERIALS; CARBON-COATED NA3V2(PO4)(3); LAYERED OXIDE MATERIALS; LESS-THAN X; HIGH-CAPACITY; ELECTROCHEMICAL PROPERTIES; CYCLING STABILITY; STRUCTURAL DEGRADATION; CRYSTAL-STRUCTURES;
D O I
10.1039/d4ta03748k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion batteries (LIBs) have been powering portable electronic devices and electric vehicles for over three decades. However, growing concerns regarding the limited availability of lithium resources and the subsequent surge in costs have prompted the exploration of alternative energy storage systems beyond LIBs. Among these alternatives, sodium-based batteries, with their similar intercalation chemistry, have emerged as the most promising alternative due to their cost-effectiveness and the abundance of sodium reserves in nature. Developing sodium-ion batteries (SIBs) that possess high energy density, long lifespan, and high-rate capability necessitates a comprehensive understanding of the reaction mechanisms, especially the intricate chemistry involved in cathode materials. In this review, we delve into the reaction mechanisms of the most commonly used cathode materials for SIBs, which include layered transition-metal oxides, polyanionic compounds, Prussian blue analogues, etc. We also highlight the specific physicochemical properties that have been uncovered through the application of advanced operando characterization techniques. Building upon the insights gained from this comprehensive review, we put forth future perspectives on the development of novel cathode materials for SIBs. By leveraging the extensive knowledge generated, we aspire to pave the way for further advancements in sodium-ion battery technology.
引用
收藏
页码:30971 / 31003
页数:33
相关论文
共 229 条
[21]   Optimization Strategies Toward Functional Sodium-Ion Batteries [J].
Chen, Jingwei ;
Adit, Gupta ;
Li, Lun ;
Zhang, Yingxin ;
Chua, Daniel H. C. ;
Lee, Pooi See .
ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (04)
[22]   Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion [J].
Chen, Junsheng ;
Wei, Li ;
Mahmood, Asif ;
Pei, Zengxia ;
Zhou, Zheng ;
Chen, Xuncai ;
Chen, Yuan .
ENERGY STORAGE MATERIALS, 2020, 25 :585-612
[23]   High-Abundance and Low-Cost Metal-Based Cathode Materials for Sodium-Ion Batteries: Problems, Progress, and Key Technologies [J].
Chen, Mingzhe ;
Liu, Qiannan ;
Wang, Shi-Wen ;
Wang, Enhui ;
Guo, Xiaodong ;
Chou, Shu-Lei .
ADVANCED ENERGY MATERIALS, 2019, 9 (14)
[24]   A Novel Graphene Oxide Wrapped Na2Fe2(SO4)3/C Cathode Composite for Long Life and High Energy Density Sodium-Ion Batteries [J].
Chen, Mingzhe ;
Cortie, David ;
Hu, Zhe ;
Jin, Huile ;
Wang, Shun ;
Gu, Qinfen ;
Hua, Weibo ;
Wang, Enhui ;
Lai, Weihong ;
Chen, Lingna ;
Chou, Shu-Lei ;
Wang, Xiao-Lin ;
Dou, Shi-Xue .
ADVANCED ENERGY MATERIALS, 2018, 8 (27)
[25]   Cathode properties of Na3M2(PO4)2F3 [M = Ti, Fe, V] for sodium-ion batteries [J].
Chihara, Kuniko ;
Kitajou, Ayuko ;
Gocheva, Irina D. ;
Okada, Shigeto ;
Yamaki, Jun-ichi .
JOURNAL OF POWER SOURCES, 2013, 227 :80-85
[26]   Advanced cobalt-free cathode materials for sodium-ion batteries [J].
Chu, Shiyong ;
Guo, Shaohua ;
Zhou, Haoshen .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (23) :13189-13235
[27]   Bioconjugation via Hetero-Selective Clamping of Two Different Amines with ortho-Phthalaldehyde [J].
Chu, Xin ;
Li, Bo ;
Liu, Hao-Yang ;
Sun, Xiaowei ;
Yang, Xiaochen ;
He, Gang ;
Zhou, Chuanzheng ;
Xuan, Weimin ;
Liu, Shu-Lin ;
Chen, Gong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (02)
[28]   ELECTROCHEMICAL INTERCALATION OF SODIUM IN NAXCOO2 BRONZES [J].
DELMAS, C ;
BRACONNIER, JJ ;
FOUASSIER, C ;
HAGENMULLER, P .
SOLID STATE IONICS, 1981, 3-4 (AUG) :165-169
[29]   STRUCTURAL CLASSIFICATION AND PROPERTIES OF THE LAYERED OXIDES [J].
DELMAS, C ;
FOUASSIER, C ;
HAGENMULLER, P .
PHYSICA B & C, 1980, 99 (1-4) :81-85
[30]   A NASICON-TYPE PHASE AS INTERCALATION ELECTRODE - NATI2(PO4)3 [J].
DELMAS, C ;
CHERKAOUI, F ;
NADIRI, A ;
HAGENMULLER, P .
MATERIALS RESEARCH BULLETIN, 1987, 22 (05) :631-639