Limit stationary statistical solutions of stochastic Navier-Stokes-Voigt equation in a 3D thin domain
被引:0
作者:
Zhong, Wenhu
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Sichuan Normal Univ, VC & VR Key Lab Sichuan Prov, Chengdu 610068, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Zhong, Wenhu
[1
,2
]
Chen, Guanggan
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Sichuan Normal Univ, VC & VR Key Lab Sichuan Prov, Chengdu 610068, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Chen, Guanggan
[1
,2
]
Wei, Yunyun
论文数: 0引用数: 0
h-index: 0
机构:
Chengdu Univ Technol, Sch Math Sci, Chengdu 610059, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Wei, Yunyun
[3
]
机构:
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
[2] Sichuan Normal Univ, VC & VR Key Lab Sichuan Prov, Chengdu 610068, Peoples R China
[3] Chengdu Univ Technol, Sch Math Sci, Chengdu 610059, Peoples R China
This work is concerned with limit behavior of the Navier-Stokes-Voigt equation with degenerate white noise in a 3D thin domain. Although the individual solutions may be chaotic in fluid dynamics, the stationary statistical solutions are essential to capture complex dynamical behaviors in the view of statistic. We therefore prove that the stationary statistical solution of the system converges weakly to the counterpart of the 2D stochastic Euler equation as the viscosity, the elasticity parameter and the thickness of the thin domain tend to zero.