共 61 条
- [1] BrainTumor - Statistics, (2012)
- [2] Ting H., Liu M., Multimodal transformer of incomplete MRI data for brain tumor segmentation, IEEE J. Biomed. Health Inf., 28, 1, pp. 89-99, (2024)
- [3] Dhar T., Dey N., Borra S., Sherratt R.S., Challenges of deep learning in medical image analysis - improving explainability and trust, IEEE Trans. Technol. Soc., 4, 1, pp. 68-75, (2023)
- [4] Rasheed K., Qayyum A., Ghaly M., Al-Fuqaha A., Razi A., Qadir J., Explainable, trustworthy, and ethical machine learning for healthcare: A survey, Comput. Biol. Med., 149, (2022)
- [5] Jyothi P., Singh A.R., Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: A review, Artif. Intell. Rev., 56, 4, pp. 2923-2969, (2023)
- [6] Huang Z., Lin L., Cheng P., Pan K., Tang X., DS-33-Net: Difficulty-perceived common-to-t1ce semi-supervised multimodal MRI synthesis network, Medical Image Computing and Computer Assisted Intervention –MICCAI 2022, Lecture Notes in Computer Science, pp. 571-581, (2022)
- [7] Coupet M., Urruty T., Leelanupab T., Naudin M., Bourdon P., Maloigne C.F., Guillevin R., A multi-sequences MRI deep framework study applied to glioma classfication, Multimedia Tools Appl., 81, 10, pp. 13563-13591, (2022)
- [8] Guo B.J., Yang Z.L., Zhang L.J., Gadolinium deposition in brain: Current scientific evidence and future perspectives, Front. Mol. Neurosci., 11, (2018)
- [9] Iyad N., S.Ahmad M., Alkhatib S.G., Hjouj M., Gadolinium contrast agents- challenges and opportunities of a multidisciplinary approach: Literature review, Eur. J. Radiol. Open, 11, (2023)
- [10] Akbas E., Unal F., Yuzbasioglu D., Cellular toxicities of gadolinium-based contrast agents used in magnetic resonance imaging, J. Appl. Toxicol., 43, 7, pp. 958-972, (2023)