A multidimensional node importance evaluation method based on graph convolutional networks

被引:0
|
作者
Wang, Bo-Ya [1 ]
Yang, Xiao-Chun [1 ]
Lu, Sheng-Rong [2 ]
Tang, Yong-Ping [1 ]
Hong, Shu-Quan [1 ]
Jiang, Hui-Yuan [1 ]
机构
[1] Wuhan Univ Technol, Sch Transportat & Logist Engn, Wuhan 430063, Peoples R China
[2] Wuhan Business Univ, Sch Business Adm, Wuhan 430056, Peoples R China
关键词
graph convolutional networks; multidimension parameters; node importance; IDENTIFYING INFLUENTIAL NODES; COMPLEX NETWORKS; NEURAL-NETWORK; INDEX;
D O I
10.7498/aps.73.20240937
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper deals with the problem of identifying, evaluating, and ranking key nodes in complex networks by introducing a novel multi-parameter control graph convolutional network (MPC-GCN) for assessing node importance. Drawing inspiration from the multidimensional and hierarchical interactions between nodes in physical systems, this method integrates the automatic feature learning capabilities of graph convolutional networks (GCNs) with a comprehensive analysis of intrinsic properties of nodes, their interactions with neighbors, and their roles in the broader network. The MPC-GCN model provides an innovative framework for identifying key node by using GCNs to iteratively aggregate node and neighbor features across layers. This process captures and combines local, global, and positional characteristics, enabling a more nuanced, multidimensional assessment of node importance. Moreover, the model also includes a flexible parameter adjustment mechanism that allows for adjusting the relative weights of different dimensions, thereby adapting the evaluation process to various network structures. To validate the effectiveness of the model, we first test the influence of model parameters on randomly generated small networks. We then conduct extensive simulations on eight large-scale networks by using the susceptible-infected-recovered (SIR) model. Evaluation metrics, including the M ( R ) score, Kendall's tau correlation, the proportion of infected nodes, and the relative size of the largest connected component, are used to assess the model's performance. The results demonstrate that MPCGCN outperforms existing methods in terms of monotonicity, accuracy, applicability, and robustness, providing more precise differentiation of node importance. By addressing the limitations of current methods, such as their reliance on single-dimensional perspectives and lack of adaptability, the MPC-GCN provides a more comprehensive and flexible approach to node importance assessment. This method significantly improves the breadth and applicability of node ranking in complex networks.
引用
收藏
页数:14
相关论文
共 45 条
  • [1] Amplitude analysis of the decays D0 → π+π-π+π- and D0 → π+π-π0π0
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Afedulidis, O.
    Ai, X. C.
    Aliberti, R.
    Amoroso, A.
    An, Q.
    Bai, Y.
    Bakina, O.
    Balossino, I.
    Ban, Y.
    Bao, H. -R.
    Batozskaya, V.
    Begzsuren, K.
    Berger, N.
    Berlowski, M.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bianco, E.
    Bortone, A.
    Boyko, I.
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, W. L.
    Che, G. R.
    Chelkov, G.
    Chen, C.
    Chen, C. H.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. L.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Y. Q.
    Chen, Z. J.
    [J]. CHINESE PHYSICS C, 2024, 48 (08)
  • [2] Ablikim M, 2024, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2024)180
  • [3] Determination of the number of ψ(3686) events at BESIII
    Ablikim, M.
    Achasov, M. N.
    Ai, X. C.
    Ambrose, D. J.
    Amoroso, A.
    An, F. F.
    An, Q.
    Bai, J. Z.
    Ferroli, R. Baldini
    Ban, Y.
    Bennett, J. V.
    Bertani, M.
    Bian, J. M.
    Boger, E.
    Bondarenko, O.
    Boyko, I.
    Briere, R. A.
    Cai, H.
    Cai, X.
    Cakir, O.
    Calcaterra, A.
    Cao, G. F.
    Cetin, S. A.
    Chang, J. F.
    Chelkov, G.
    Chen, G.
    Chen, H. S.
    Chen, J. C.
    Chen, M. L.
    Chen, S. J.
    Chen, X.
    Chen, X. R.
    Chen, Y. B.
    Chu, X. K.
    Chu, Y. P.
    Cronin-Hennessy, D.
    Dai, H. L.
    Dai, J. P.
    Dedovich, D.
    Deng, Z. Y.
    Denig, A.
    Denysenko, I.
    Destefanis, M.
    Ding, Y.
    Dong, C.
    Dong, J.
    Dong, L. Y.
    Dong, M. Y.
    Du, S. X.
    Fan, J. Z.
    [J]. CHINESE PHYSICS C, 2018, 42 (02)
  • [4] SLGC: Identifying influential nodes in complex networks from the perspectives of self-centrality, local centrality, and global centrality
    Ai, Da
    Liu, Xin-Long
    Kang, Wen-Zhe
    Li, Lin-Na
    Lu, Shao-Qing
    Liu, Ying
    [J]. CHINESE PHYSICS B, 2023, 32 (11)
  • [5] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [6] Friction and Wear Behaviors of Ag/MoS2/G Composite in Different Atmospheres and at Different Temperatures
    Chen, Fanyan
    Feng, Yi
    Shao, Hao
    Zhang, Xuebin
    Chen, Jie
    Chen, Nannan
    [J]. TRIBOLOGY LETTERS, 2012, 47 (01) : 139 - 148
  • [7] CatGCN: Graph Convolutional Networks With Categorical Node Features
    Chen, Weijian
    Feng, Fuli
    Wang, Qifan
    He, Xiangnan
    Song, Chonggang
    Ling, Guohui
    Zhang, Yongdong
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 3500 - 3511
  • [8] Fan Y N, 2020, Math. Pract. Theory, V50, P159, DOI 2020(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)50159
  • [9] SET OF MEASURES OF CENTRALITY BASED ON BETWEENNESS
    FREEMAN, LC
    [J]. SOCIOMETRY, 1977, 40 (01): : 35 - 41
  • [10] Effective graph-neural-network based models for discovering Structural Hole Spanners in large-scale and diverse networks
    Goel, Diksha
    Shen, Hong
    Tian, Hui
    Guo, Mingyu
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249