Serial Number Recognition of Ceramic Membrane Based on End-to-end Deep Learning

被引:0
|
作者
Wang Y. [1 ]
机构
[1] School of Cultural Heritage and Art Design, Zhengzhou University of Technology, Henan, Zhengzhou
来源
Computer-Aided Design and Applications | 2024年 / 21卷 / S1期
关键词
CAD; Ceramic Membrane; Deep Learning; Serial Number; Super Resolution;
D O I
10.14733/cadaps.2024.S1.232-245
中图分类号
学科分类号
摘要
for manufacturers, serial number (SN) is not only beneficial to the centralized assembly of products, but also brings great convenience to the traceability of production process. For workers in wastewater treatment process, the SN of ceramic membrane is also the basis for them to install ceramic membrane correctly. Image resolution, as a key factor to assess the quality of digital images, is the basis for the subsequent processing of ceramic membrane SN recognition. In this article, an image super-resolution (SR) algorithm based on end-to-end DL and computer aided design (CAD) model is proposed. A deep learning (DL) model suitable for mixed views as input signals is selected, and a hierarchical learning structure is constructed by using deep neural network. Combined with the extracted CAD model views, the SN of ceramic membranes is identified. It’s not difficult to seen from the test results that the ceramic membrane SN image recognition model in this article has obvious advantages over the recurrent neural network (RNN), with an accuracy of over 96% and an error of over 25% lower than that of the comparative RNN model. This algorithm improves the reconstruction effect of detailed information in the image, optimize the reconstruction image, improve the automation of Ceramic membrane production and sewage treatment, and promote the development of industrial software. © 2024, CAD Solutions, LLC. All rights reserved.
引用
收藏
页码:232 / 245
页数:13
相关论文
共 50 条
  • [21] End-to-end residual learning-based deep neural network model deployment for human activity recognition
    Alok Negi
    Krishan Kumar
    International Journal of Multimedia Information Retrieval, 2023, 12
  • [22] MINTZAI: End-to-end Deep Learning for Speech Translation
    Etchegoyhen, Thierry
    Arzelus, Haritz
    Gete, Harritxu
    Alvarez, Aitor
    Hernaez, Inma
    Navas, Eva
    Gonzalez-Docasal, Ander
    Osacar, Jaime
    Benites, Edson
    Ellakuria, Igor
    Calonge, Eusebi
    Martin, Maite
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2020, (65): : 97 - 100
  • [23] An End-to-End Detection Method for WebShell with Deep Learning
    Qi, Longchen
    Kong, Rui
    Lu, Yang
    Zhuang, Honglin
    2018 EIGHTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION AND MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2018), 2018, : 660 - 665
  • [24] An Analytic End-to-End Collaborative Deep Learning Algorithm
    Li, Sitan
    Cheah, Chien Chern
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3024 - 3029
  • [25] Detecting web attacks with end-to-end deep learning
    Pan, Yao
    Sun, Fangzhou
    Teng, Zhongwei
    White, Jules
    Schmidt, Douglas C.
    Staples, Jacob
    Krause, Lee
    JOURNAL OF INTERNET SERVICES AND APPLICATIONS, 2019, 10 (01)
  • [26] End-to-End Deep Learning of Optical Fiber Communications
    Karanov, Boris
    Chagnon, Mathieu
    Thouin, Felix
    Eriksson, Tobias A.
    Buelow, Henning
    Lavery, Domanic
    Bayvel, Polina
    Schmalen, Laurent
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (20) : 4843 - 4855
  • [27] End-to-end Multimodel Deep Learning for Malware Classification
    Snow, Elijah
    Alam, Mahbubul
    Glandon, Alexander
    Iftekharuddin, Khan
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [28] An End-to-End Deep Learning System for Hop Classification
    Castro, Pedro
    Moreira, Gladston
    Luz, Eduardo
    IEEE LATIN AMERICA TRANSACTIONS, 2022, 20 (03) : 430 - 442
  • [29] End-to-end residual learning-based deep neural network model deployment for human activity recognition
    Negi, Alok
    Kumar, Krishan
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2023, 12 (01)
  • [30] A novel end-to-end deep learning approach for cancer detection based on microscopic medical images
    Hammad, Mohamed
    Bakrey, Mohamed
    Bakhiet, Ali
    Tadeusiewicz, Ryszard
    Abd El-Latif, Ahmed A.
    Plawiak, Pawel
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (03) : 737 - 748