Elucidating the increased ohmic resistances in zero-gap alkaline water electrolysis

被引:10
作者
Barros, Rodrigo Lira Garcia [1 ]
Kelleners, Mathy H. G. [1 ]
van Bemmel, Lucas [1 ]
van der Leegte, Thijmen V. N. [1 ]
van der Schaaf, John [1 ,2 ]
de Groot, Matheus T. [1 ,2 ]
机构
[1] Eindhoven Univ Technol, Dept Chem Engn & Chem, Sustainable Proc Engn, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Eindhoven Inst Renewable Energy Syst, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
Electrolysis; Ohmic resistance; Zero-gap; 4-terminal configuration; Contact resistance; HYDROGEN; ZIRFON(R); CELL;
D O I
10.1016/j.electacta.2024.145161
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This study investigates the increased ohmic resistances observed in zero-gap alkaline water electrolyzers, aiming to provide insights that can help enhance electrolyzer efficiency and enable operation at higher current densities. Electrochemical impedance spectroscopy (EIS) has been employed in combination with chronopotentiometry, utilizing a custom-designed flow cell with nickel perforated electrodes and a Zirfon UTP 500 diaphragm. Observed differences in area-ohmic resistance values obtained through I-V fitting and EIS, are ascribed to a nonlinear Tafel slope at higher current densities. Ohmic resistance values measured with EIS are up to 27% higher than the ex-situ determined value, a significantly smaller percentage than expected based on previous studies. The presence of bubbles outside and inside the diaphragm is identified as the key factor contributing to this increased resistance. We recommend the use of an improved fitting approach, accounting for non-linear Tafel behavior, and the use of a 4-terminal configuration when performing EIS measurements to minimize cable and contact resistance.
引用
收藏
页数:11
相关论文
共 47 条
[1]  
Agfa-Gevaert N.V., 2021, Technical Data Sheet: Zirfon UTP 220
[2]  
Agfa-Gevaert NV, 2020, Technical data sheet ZIRFON PERL UTP 500: Separator membrane for alkaline electrolysis
[3]   Development of a membrane electrode assembly for alkaline water electrolysis by direct electrodeposition of nickel on carbon papers [J].
Ahn, Sang Hyun ;
Lee, Byung-Seok ;
Choi, Insoo ;
Yoo, Sung Jong ;
Kim, Hyoung-Juhn ;
Cho, Eunae ;
Henkensmeier, Dirk ;
Nam, Suk Woo ;
Kim, Soo-Kil ;
Jang, Jong Hyun .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 154 :197-205
[4]   Techniques for determining contact angle and wettability of powders [J].
Alghunaim, Abdullah ;
Kirdponpattara, Suchata ;
Newby, Bi-min Zhang .
POWDER TECHNOLOGY, 2016, 287 :201-215
[5]  
Angulo A., 2020, Influence of bubbles on the energy conversion efficiency of electrochemical reactors, DOI [10.1016/j.joule.2020.01.005, DOI 10.1016/J.JOULE.2020.01.005]
[6]  
[Anonymous], 2020, Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.50C Climate Goal
[7]   Impact of an electrode-diaphragm gap on diffusive hydrogen crossover in alkaline water electrolysis [J].
Barros, Rodrigo Lira Garcia ;
Kraakman, Joost T. ;
Sebregts, Carlijn ;
van der Schaaf, John ;
de Groot, Matheus T. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 :886-896
[8]  
Birol F., 2019, The future of hydrogen: Seizing today's opportunities, P203, DOI DOI 10.1787/1-0514C4-EN
[9]   Gas bubble removal from a zero-gap alkaline electrolyser with a pressure swing and why foam electrodes might not be suitable at high current densities [J].
Bleeker, Jorrit ;
van Ommen, J. Ruud ;
van Kasteren, Celine ;
Vermaas, David A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 57 :1398-1407
[10]   Evaluation of Diaphragms and Membranes as Separators for Alkaline Water Electrolysis [J].
Brauns, Joern ;
Schoenebeck, Jonas ;
Kraglund, Mikkel Rykaer ;
Aili, David ;
Hnat, Jaromir ;
Zitka, Jan ;
Mues, Willem ;
Jensen, Jens Oluf ;
Bouzek, Karel ;
Turek, Thomas .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (01)