Prototype Discriminative Learning for Semi-Supervised Change Detection in Remote Sensing Images

被引:1
|
作者
You, Zhi-Hui [1 ]
Chen, Si-Bao [1 ]
Wang, Jia-Xin [1 ]
Ding, Chris H. Q. [2 ]
Tang, Jin [1 ]
Luo, Bin [1 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, MOE Key Lab, ICSP,IMIS Lab Anhui Prov,Anhui Prov Key Lab Multim, Hefei 230601, Peoples R China
[2] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shenzhen 518172, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Prototypes; Transformers; Semisupervised learning; Semantics; Deep learning; Data mining; Training data; Training; Semantic segmentation; Change detection (CD); deep learning; prototype; remote sensing (RS); semi-supervised learning; NETWORK;
D O I
10.1109/TGRS.2024.3491111
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the continuous progress of deep learning in remote sensing (RS) visual tasks, considerable advancements have been achieved in RS image change detection (CD). However, prevailing CD methods heavily rely on extensive sets of fully pixelwise hand-annotated training data, a time-consuming and costly process, and they fail to fully harness the potential benefits of deep feature representations within the deep feature domain. To tackle the mentioned issues, we propose a novel semi-supervised CD method called PDLCD, which strategically leverages useful information from massive unlabeled data to complement labeled data with just a few samples. Specifically, changed objects and unchanged backgrounds of bitemporal RS images are various and complex, our approach advocates dividing each category into multiple subclasses in the deep feature domain. In this scheme, the high-level feature of each subclass follows a Gaussian distribution. Then, the prototype discriminative learning (PDL) is introduced to explicitly encourage deep features of samples closer to the nearest prototype within their respective category, and away from all prototypes of other categories. We design feature discriminative loss (FDL) to implement PDL for constructing more pronounced intraclass compactness and interclass variability. Finally, we compute the supervised loss based on a limited set of labeled data, incorporate the unsupervised loss leveraging a substantial volume of unlabeled data, and include FDL within the deep feature domain to collectively optimize the model. Extensive experiments carried out on three challenging RS image CD datasets illustrate that our proposed semi-supervised CD method obtains better CD performance than previous counterparts. The source code is available at: https://github.com/Youzhihui/PDLCD.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] SEMI-SUPERVISED FEATURE LEARNING FOR REMOTE SENSING IMAGE CLASSIFICATION
    Yin, Xiaoshuang
    Yang, Wen
    Xia, Gui-Song
    Dong, Lixia
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1261 - 1264
  • [42] A semi-supervised learning method for remote sensing data mining
    Vatsavai, RR
    Shekhar, S
    Burk, TE
    ICTAI 2005: 17TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, : 207 - 211
  • [43] Discriminative Prototype Learning for Few-Shot Object Detection in Remote-Sensing Images
    Guo, Manke
    You, Yanan
    Liu, Fang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 13
  • [44] EFFICIENT SEMI-SUPERVISED FEATURE SELECTION FOR VHR REMOTE SENSING IMAGES
    Chen, Xi
    Song, Lin
    Hou, Yuguan
    Shao, Guofan
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1500 - 1503
  • [45] Decouple and weight semi-supervised semantic segmentation of remote sensing images
    Huang, Wei
    Shi, Yilei
    Xiong, Zhitong
    Zhu, Xiao Xiang
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 212 : 13 - 26
  • [46] Uncertainty-Aware Contrastive Learning for Semi-Supervised Classification of Multimodal Remote Sensing Images
    Ding, Kexin
    Lu, Ting
    Li, Shutao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [47] Semi-supervised Scene Classification of Remote Sensing Images Based on GAN
    Xia Ying
    Li Junyao
    Guo Dongen
    ACTA PHOTONICA SINICA, 2022, 51 (03)
  • [48] Dimensionality reduction of remote sensing image using semi-supervised discriminative locality alignment
    Wang, X.-S. (wangxuesongcumt@163.com), 1600, Chinese Institute of Electronics (42):
  • [49] Semi-supervised label propagation for multi-source remote sensing image change detection
    Hao, Fan
    Ma, Zong-Fang
    Tian, Hong-Peng
    Wang, Hao
    Wu, Di
    COMPUTERS & GEOSCIENCES, 2023, 170
  • [50] Wavelet Siamese Network With Semi-Supervised Domain Adaptation for Remote Sensing Image Change Detection
    Xiong, Fengchao
    Li, Tianhan
    Yang, Yi
    Zhou, Jun
    Lu, Jianfeng
    Qian, Yuntao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62