Prototype Discriminative Learning for Semi-Supervised Change Detection in Remote Sensing Images

被引:1
作者
You, Zhi-Hui [1 ]
Chen, Si-Bao [1 ]
Wang, Jia-Xin [1 ]
Ding, Chris H. Q. [2 ]
Tang, Jin [1 ]
Luo, Bin [1 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, MOE Key Lab, ICSP,IMIS Lab Anhui Prov,Anhui Prov Key Lab Multim, Hefei 230601, Peoples R China
[2] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shenzhen 518172, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Prototypes; Transformers; Semisupervised learning; Semantics; Deep learning; Data mining; Training data; Training; Semantic segmentation; Change detection (CD); deep learning; prototype; remote sensing (RS); semi-supervised learning; NETWORK;
D O I
10.1109/TGRS.2024.3491111
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the continuous progress of deep learning in remote sensing (RS) visual tasks, considerable advancements have been achieved in RS image change detection (CD). However, prevailing CD methods heavily rely on extensive sets of fully pixelwise hand-annotated training data, a time-consuming and costly process, and they fail to fully harness the potential benefits of deep feature representations within the deep feature domain. To tackle the mentioned issues, we propose a novel semi-supervised CD method called PDLCD, which strategically leverages useful information from massive unlabeled data to complement labeled data with just a few samples. Specifically, changed objects and unchanged backgrounds of bitemporal RS images are various and complex, our approach advocates dividing each category into multiple subclasses in the deep feature domain. In this scheme, the high-level feature of each subclass follows a Gaussian distribution. Then, the prototype discriminative learning (PDL) is introduced to explicitly encourage deep features of samples closer to the nearest prototype within their respective category, and away from all prototypes of other categories. We design feature discriminative loss (FDL) to implement PDL for constructing more pronounced intraclass compactness and interclass variability. Finally, we compute the supervised loss based on a limited set of labeled data, incorporate the unsupervised loss leveraging a substantial volume of unlabeled data, and include FDL within the deep feature domain to collectively optimize the model. Extensive experiments carried out on three challenging RS image CD datasets illustrate that our proposed semi-supervised CD method obtains better CD performance than previous counterparts. The source code is available at: https://github.com/Youzhihui/PDLCD.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Semantic Segmentation of seafloor images in Philippines based on semi-supervised learning
    Wang, Shulei
    Mizuno, Katsunori
    Tabeta, Shigeru
    Kei, Terayama
    2023 IEEE UNDERWATER TECHNOLOGY, UT, 2023,
  • [42] Stacked Autoencoders Driven by Semi-Supervised Learning for Building Extraction from near Infrared Remote Sensing Imagery
    Protopapadakis, Eftychios
    Doulamis, Anastasios
    Doulamis, Nikolaos
    Maltezos, Evangelos
    REMOTE SENSING, 2021, 13 (03) : 1 - 24
  • [43] Semi-supervised semantic segmentation based on Generative Adversarial Networks for remote sensing images
    Liu Yu-Xi
    Zhang Bo
    Wang Bin
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2020, 39 (04) : 473 - 482
  • [44] Mutual Filter Teaching for Open-Set Semi-Supervised Learning
    Li, Xiaokun
    Yi, Rumeng
    Huang, Yaping
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 7700 - 7708
  • [45] Network Abnormal Traffic Detection Model Based on Semi-Supervised Deep Reinforcement Learning
    Dong, Shi
    Xia, Yuanjun
    Peng, Tao
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021, 18 (04): : 4197 - 4212
  • [46] CrossMatch: Cross-View Matching for Semi-Supervised Remote Sensing Image Segmentation
    Liu, Ruizhong
    Luo, Tingzhang
    Huang, Shaoguang
    Wu, Yuwei
    Jiang, Zhen
    Zhang, Hongyan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [47] Discriminative sparse least square regression for semi-supervised learning
    Liu, Zhonghua
    Lai, Zhihui
    Ou, Weihua
    Zhang, Kaibing
    Huo, Hua
    INFORMATION SCIENCES, 2023, 636
  • [48] Change Detection Based on Supervised Contrastive Learning for High-Resolution Remote Sensing Imagery
    Wang, Jue
    Zhong, Yanfei
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [49] Confidence-Weighted Dual-Teacher Networks With Biased Contrastive Learning for Semi-Supervised Semantic Segmentation in Remote Sensing Images
    Xin, Yi
    Fan, Zide
    Qi, Xiyu
    Zhang, Yidan
    Li, Xinming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [50] MMatch: Semi-Supervised Discriminative Representation Learning for Multi-View Classification
    Wang, Xiaoli
    Fu, Liyong
    Zhang, Yudong
    Wang, Yongli
    Li, Zechao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (09) : 6425 - 6436