Direct Observation of Suppressing Ion Migration at Surface and Buried Interface toward Stable Perovskite Solar Cells

被引:0
|
作者
Guo, Zhongli [1 ]
Yan, Jinjian [2 ,3 ]
Zhao, Shanshan [1 ]
Zhang, Jing [1 ]
Lu, Lihua [1 ]
Yun, Yikai [1 ]
Hu, Beier [1 ]
Luo, Hongqiang [1 ]
Chen, Mengyu [1 ,3 ]
Huang, Kai [2 ,3 ,4 ]
Li, Cheng [1 ,3 ]
Zhang, Rong [2 ,3 ,4 ]
机构
[1] Xiamen Univ, Sch Elect Sci & Engn, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, CI Ctr OSED, Dept Phys, Fujian Key Lab Semicond Mat & Applicat,Minist Educ, Xiamen 361005, Fujian, Peoples R China
[3] Future Display Inst Xiamen, Xiamen 361005, Fujian, Peoples R China
[4] Xiamen Univ, Minist Educ, Engn Res Ctr Micronano Optoelect Mat & Devices, Xiamen 361005, Fujian, Peoples R China
来源
ACS SUSTAINABLE CHEMISTRY & ENGINEERING | 2024年 / 12卷 / 46期
关键词
ionic liquid; suppress ion migration; passivatedefect; perovskite solar cells; stability; ROOM-TEMPERATURE; PERFORMANCE; EFFICIENCY; MOLECULES; LAYERS;
D O I
10.1021/acssuschemeng.4c07322
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ion migration can lead to detrimental consequences, including hysteresis effects, interfacial reactions, etc., which degrades the stability and efficiency of perovskite solar cells (PSCs). Ionic liquid has been introduced to enhance the stability of PSCs, yet the detailed mechanism is still under debate. To address the question, in situ wide-field photoluminescence microscopy is employed to characterize the ion migration, which is found more obviously suppressed at the perovskite buried interface than the surface after 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) modification. The experimental results show that BF4 - is distributed mainly at the buried interface, while BMIM exists throughout the perovskite film and accumulates at the surface. BF4 - can suppress ion migration through filling the iodine vacancies and passivating undercoordinated Pb2+, thus reducing the defect density. Meanwhile, BMIM+ can passivate lead vacancies (VPb) and undercoordinated Pb2+ across the whole perovskite film, effectively decreasing the Pb-related defects. Consequently, PSCs incorporated with BMIMBF4 exhibit enhanced power conversion efficiency and stability. This study provides a comprehensive understanding of the role of ionic liquids in the ion migration of perovskite interfaces and its impact on the performance of PSCs.
引用
收藏
页码:17007 / 17017
页数:11
相关论文
共 50 条
  • [21] Toward Efficient and Stable Perovskite Solar Cells by 2D Interface Energy Band Alignment
    Wang, Weiwei
    Su, Zhenhuang
    Sun, Bo
    Tao, Lei
    Gu, Hao
    Hui, Wei
    Wei, Qi
    Shi, Wei
    Gao, Xingyu
    Xia, Yingdong
    Chen, Yonghua
    ADVANCED MATERIALS INTERFACES, 2021, 8 (01)
  • [22] Reconstructing the amorphous and defective surface for efficient and stable perovskite solar cells
    Xie, Jiangsheng
    Zhao, Shenghe
    Hang, Pengjie
    Chen, Tian
    Wen, Bin
    Yin, Qixin
    Wei, Shichen
    Zhu, Shengcai
    Yu, Xuegong
    Qin, Minchao
    Lu, Xinhui
    Yan, Keyou
    Xu, Jianbin
    Gao, Pingqi
    SCIENCE CHINA-MATERIALS, 2023, 66 (04) : 1323 - 1331
  • [23] Toward Highly Reproducible, Efficient, and Stable Perovskite Solar Cells via Interface Engineering with CoO Nanoplates
    Dou, Yanfei
    Wang, Deng
    Li, Guodong
    Liao, Yinsheng
    Sun, Weihai
    Wu, Jihuai
    Lan, Zhang
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (35) : 32159 - 32168
  • [24] In Situ Passivation on Rear Perovskite Interface for Efficient and Stable Perovskite Solar Cells
    Wang, Gaoxiang
    Wang, Lipeng
    Qiu, Jianhang
    Yan, Zheng
    Li, Changji
    Dai, Chunli
    Zhen, Chao
    Tai, Kaiping
    Yu, Wei
    Jiang, Xin
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (06) : 7690 - 7700
  • [25] Buried solvent assisted perovskite crystallization for efficient and stable inverted solar cells
    Wang, Yu
    Song, Jiaxing
    Chu, Liang
    Zang, Yue
    Tu, Yibo
    Ye, Jingchuan
    Jin, Yingzhi
    Li, Guodong
    Li, Zaifang
    Yan, Wensheng
    JOURNAL OF POWER SOURCES, 2023, 558
  • [26] Suppressing the ions-induced degradation for operationally stable perovskite solar cells
    Li, Xiaodong
    Fu, Sheng
    Liu, Shiyu
    Wu, Yulei
    Zhang, Wenxiao
    Song, Weijie
    Fang, Junfeng
    NANO ENERGY, 2019, 64
  • [27] A Versatile Bridging Molecule Managed the Buried SnO2/Perovskite Interface for Efficient and Stable Perovskite Solar Cells
    Tan, Haiting
    Yu, Xue
    Ren, Weibin
    Yin, Tianzhou
    Wen, Haoxin
    Guo, Yixuan
    Zhang, Zimin
    Liu, Chuangping
    Zhou, Gangsheng
    Li, Hao
    Qiu, Xijie
    Wu, Hualin
    Yang, Zhi
    Huang, Shaoming
    SMALL, 2025,
  • [28] Push-pull substituent design of fullerene dimer at the buried interface toward stable and efficient perovskite solar cells
    Wang, Hui
    Guo, Chuanhang
    Li, Fabao
    Zeng, Shuai
    Li, Xiangyang
    Fu, Huayu
    Wang, Tao
    Liu, Dan
    SCIENCE CHINA-MATERIALS, 2024, 67 (01) : 58 - 66
  • [29] Inhibiting Ion Migration Through Chemical Polymerization and Chemical Chelation Toward Stable Perovskite Solar Cells
    Zhang, Jiakang
    Niu, Xueqing
    Peng, Cheng
    Jiang, Haokun
    Yu, Le
    Zhou, Hong
    Zhou, Zhongmin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (50)
  • [30] Organic Crosslinked Tin Oxide Mitigating Buried Interface Defects for Efficient and Stable Perovskite Solar Cells
    He, Jiang
    Zhang, Jiyao
    Zhang, Yong
    Xu, Jiamin
    Liang, Zheng
    Zhu, Peide
    Peng, Wenbo
    Qu, Geping
    Pan, Xu
    Wang, Xingzhu
    Xu, Baomin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (07)