Ce Promotion of In2O3 for Electrochemical Reduction of CO2 to Formate

被引:3
|
作者
Wissink, Tim [1 ]
Rollier, Floriane A. [1 ]
Muravev, Valery [1 ]
Heinrichs, Jason M. J. J. [1 ]
van de Poll, Rim C. J. [1 ]
Zhu, Jiadong [1 ]
Anastasiadou, Dimitra [1 ]
Kosinov, Nikolay [1 ]
Figueiredo, Marta C. [1 ]
Hensen, Emiel J. M. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Chem Engn & Chem, Lab Inorgan Mat & Catalysis, NL-5600 MB Eindhoven, Netherlands
来源
ACS CATALYSIS | 2024年 / 14卷 / 22期
基金
欧盟地平线“2020”;
关键词
CO2; electroreduction; formate; In2O3; dopants; cerium promotion; RAY PHOTOELECTRON-SPECTROSCOPY; CARBON-DIOXIDE; CHEMICAL-STATE; FORMIC-ACID; CRYSTAL-STRUCTURE; METAL-ELECTRODES; ELECTROREDUCTION; OXIDE; OXIDATION; INSIGHTS;
D O I
10.1021/acscatal.4c02619
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In2O3 is a promising electrocatalyst for CO2 electroreduction (CO2ER) to formate. In2O3 nanoparticles doped with Pd, Ni, Co, Zr, and Ce promoters using flame-spray pyrolysis were characterized and evaluated in a gas diffusion electrode for the CO2ER. Doping results in slight shifts of the In binding energy as probed by XPS, which correlates with a change of the Faradaic efficiency to formate (FEformate) in the order Ce-doped In2O3 > Zr-doped In2O3 > In2O3 > Pd-doped In2O3 > Ni-doped In2O3 > Co-doped In2O3. However, the differences in CO2ER performance are caused mainly by the different extent of In2O3 reduction. Co-doped In2O3 is prone to complete reduction to a stable Co-In alloy with a low FEformate due to a high hydrogen evolution activity. The stabilizing effect of Ce on In2O3 is further demonstrated by an X-ray absorption spectroscopy study of a set of Ce-doped In2O3 samples (10, 50, 90 at%), highlighting that reduction of In2O3 is suppressed with increasing Ce content. Optimum performance in terms of FEformate is obtained at a Ce content of 10 at%, which is attributed to the stabilization of In2O3 under negative bias up to -2 V. At higher Ce content, less active CeO2 is formed. The highest FEformate of 86% observed for In2O3 doped with 10 at% Ce, at a current density of 150 mA/cm2, compares favorably with a FEformate of 78% for In2O3.
引用
收藏
页码:16589 / 16604
页数:16
相关论文
共 50 条
  • [41] Porous Bi Nanosheets Derived from β-Bi2O3 for Efficient Electrocatalytic CO2 Reduction to Formate
    Pang, Yongyu
    Xie, Ruikuan
    Xie, Huan
    Lan, Shaojie
    Jiang, Taiwen
    Chai, Guoliang
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (32) : 42109 - 42117
  • [42] Enhancing Electrochemical Reduction of CO2 to Formate by Regulating the Support Morphology(1)
    Zhao Xiu-Hui
    Zhuo De-Huang
    Chen Qing-Song
    Guo Guo-Cong
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2021, 40 (03) : 376 - 382
  • [43] Production of formate by CO2 electrochemical reduction and its application in energy storage
    Xiang, Hang
    Miller, Hamish Andrew
    Bellini, Marco
    Christensen, Henriette
    Scott, Keith
    Rasul, Shahid
    Yu, Eileen H.
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (01): : 277 - 284
  • [44] Bilayer Porous Electrocatalysts for Stable and Selective Electrochemical Reduction of CO2 to Formate in the Presence of Flue Gas Containing NO and SO2
    Prasad, Yadavalli Satya Sivaram
    Chandiran, Aravind Kumar
    Chetty, Raghuram
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (24) : 31011 - 31022
  • [45] Mechanistic Pathway in the Electrochemical Reduction of CO2 on RuO2
    Karamad, Mohammadreza
    Hansen, Heine A.
    Rossmeisl, Jan
    Norskov, Jens K.
    ACS CATALYSIS, 2015, 5 (07): : 4075 - 4081
  • [46] CuSnBi Catalyst Grown on Copper Foam by Co-Electrodeposition for Efficient Electrochemical Reduction of CO2 to Formate
    Xie, Hangxin
    Lv, Li
    Sun, Yuan
    Wang, Chunlai
    Xu, Jialin
    Tang, Min
    CATALYSTS, 2024, 14 (03)
  • [47] Engineering Hydrogen Generation Sites to Promote Electrocatalytic CO2 Reduction to Formate
    Guo, Xinyue
    Xu, Si-Min
    Zhou, Hua
    Ren, Yue
    Ge, Ruixiang
    Xu, Ming
    Zheng, Lirong
    Kong, Xianggui
    Shao, Mingfei
    Li, Zhenhua
    Duan, Haohong
    ACS CATALYSIS, 2022, 12 (17) : 10551 - 10559
  • [48] Hierarchical TiN-Supported TsFDH Nanobiocatalyst for CO2 Reduction to Formate
    Arena, Federica
    Giuffredi, Giorgio
    Perego, Andrea
    Donini, Stefano
    Guzman, Hilmar
    Hernandez, Simelys
    Stancanelli, Eduardo
    Cosentino, Cesare
    Parisini, Emilio
    Di Fonzo, Fabio
    CHEMELECTROCHEM, 2021, 8 (15): : 2846 - 2857
  • [49] Electrochemical Reduction of CO2 (E RCO2) on Pb Electrocatalysts using Mn3O4 as Anode
    Yadav, V. S. K.
    Saad, Mohammed A. H. S.
    Al-Marri, Mohammed J.
    Kumar, Anand
    CHEMELECTROCHEM, 2025, 12 (06):
  • [50] Enhancing formate yield through electrochemical CO2 reduction using BiOCl and g-C3N4 hybrid catalyst
    Talukdar, Smritirekha
    Bevilacqua, Manuela
    Bu, Enqi
    Gabellini, Lapo
    Querci, Lapo
    Delgado, Juan Jose
    Mannini, Matteo
    Fornasiero, Paolo
    Montini, Tiziano
    INORGANICA CHIMICA ACTA, 2025, 574