Molecular Synergistic Effects Mediate Efficient Interfacial Chemistry: Enabling Dendrite-Free Zinc Anode for Aqueous Zinc-Ion Batteries

被引:6
|
作者
Li, Yue-Ming [1 ]
Li, Wen-Hao [2 ]
Li, Kai [3 ]
Jiang, Wen-Bin [1 ]
Tang, Yuan-Zheng [4 ]
Zhang, Xiao-Ying [1 ]
Yuan, Hai-Yan [1 ]
Zhang, Jing-Ping [1 ]
Wu, Xing-Long [2 ]
机构
[1] Northeast Normal Univ, Fac Chem, Jilin Prov Key Lab Organ Funct Mol Design & Synth, Changchun 130024, Jilin, Peoples R China
[2] Northeast Normal Univ, MOE Key Lab UV Light Emitting Mat & Technol, Changchun 130024, Jilin, Peoples R China
[3] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Jilin, Peoples R China
[4] Qingdao Univ Sci & Technol, Coll Electromech Engn, Qingdao 260061, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
The primary cause of the accelerated battery failure in aqueous zinc-ion batteries (AZIBs) is the uncontrollable evolution of the zinc metal-electrolyte interface. In the present research on the development of multiadditives to ameliorate interfaces; it is challenging to elucidate the mechanisms of the various components. Additionally; the synergy among additive molecules is frequently disregarded; resulting in the combined efficacy of multiadditives that is unlikely to surpass the sum of each component. In this study; the molecular synergistic effect is employed; which is generated by two nonhomologous acid ester (NAE) additives in the double electrical layer microspace. Specifically; ethyl methyl carbonate (EMC) is more inclined to induce the oriented deposition of zinc metal by means of targeted adsorption with the zinc (002) crystal plane. Methyl acetate (MA) is more likely to enter the solvated shell of Zn2+ and will be profoundly reduced to produce SEI that is dominated by organic components under the molecular synergistic effect of EMC. Furthermore; MA persists in a spontaneous hydrolysis reaction; which serves to mitigate the pH increase caused by the hydrogen evolution reaction (HER) and further prevents the formation of byproducts. Consequently; the 1E1M electrolyte not only extends the cycle life of the zinc anode to 3140 cycles (1 mA h cm-2 and 1 mA cm-2) but also extends the life of the Zn//MnO2 full battery; with the capacity retention rate still at 89.9% after 700 cycles. © 2024 American Chemical Society;
D O I
10.1021/jacs.4c10337
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The primary cause of the accelerated battery failure in aqueous zinc-ion batteries (AZIBs) is the uncontrollable evolution of the zinc metal-electrolyte interface. In the present research on the development of multiadditives to ameliorate interfaces, it is challenging to elucidate the mechanisms of the various components. Additionally, the synergy among additive molecules is frequently disregarded, resulting in the combined efficacy of multiadditives that is unlikely to surpass the sum of each component. In this study, the "molecular synergistic effect" is employed, which is generated by two nonhomologous acid ester (NAE) additives in the double electrical layer microspace. Specifically, ethyl methyl carbonate (EMC) is more inclined to induce the oriented deposition of zinc metal by means of targeted adsorption with the zinc (002) crystal plane. Methyl acetate (MA) is more likely to enter the solvated shell of Zn2+ and will be profoundly reduced to produce SEI that is dominated by organic components under the "molecular synergistic effect" of EMC. Furthermore, MA persists in a spontaneous hydrolysis reaction, which serves to mitigate the pH increase caused by the hydrogen evolution reaction (HER) and further prevents the formation of byproducts. Consequently, the 1E1M electrolyte not only extends the cycle life of the zinc anode to 3140 cycles (1 mA h cm-2 and 1 mA cm-2) but also extends the life of the Zn//MnO2 full battery, with the capacity retention rate still at 89.9% after 700 cycles.
引用
收藏
页码:30998 / 31011
页数:14
相关论文
共 50 条
  • [21] Stable dendrite-free Zn anode with Janus MXene-Ag interfacial bifunctional protective layer for aqueous zinc-ion batteries
    Liu, Zhu
    Li, Xuanyang
    Li, Zhiheng
    Ma, Longli
    Wang, Yuan
    Ye, Chuming
    Ye, Mingxin
    Shen, Jianfeng
    CHEMICAL ENGINEERING JOURNAL, 2024, 479
  • [22] Zincophilic Design for Highly Stable and Dendrite-Free Zinc Metal Anodes in Aqueous Zinc-Ion Batteries
    Zhang, Jingjing
    Mao, Longhua
    Xia, Zhigang
    Fan, Meiqiang
    Deng, Yaping
    Chen, Zhongwei
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [23] Highly Efficient, Dendrite-Free Zinc Electrodeposition in Mild Aqueous Zinc-Ion Batteries through Indium-Based Substrates
    Tribbia, Michele
    Glenneberg, Jens
    Zampardi, Giorgia
    La Mantia, Fabio
    BATTERIES & SUPERCAPS, 2022, 5 (05)
  • [24] Integrated design of aqueous zinc-ion batteries based on dendrite-free zinc microspheres/carbon nanotubes/nanocellulose composite film anode
    Wang, Anran
    Zhou, Weijun
    Chen, Minfeng
    Huang, Aixiang
    Tian, Qinghua
    Xu, Xinwu
    Chen, Jizhang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 594 : 389 - 397
  • [25] A nano-copper particle-modified zinc anode as a protective coating enables dendrite-free aqueous zinc-ion batteries
    Zhu, Hongchuan
    Zhao, Mingshu
    Shi, Mangmang
    Yuan, Chenjie
    Li, Feng
    Su, Zhou
    Jiao, Lidong
    Li, Min
    Yang, Sen
    DALTON TRANSACTIONS, 2024, 53 (08) : 3855 - 3864
  • [26] Laminated Zinc-Copper Electrodes as Reversible and Dendrite-Free Anodes for Aqueous Rechargeable Zinc-Ion Batteries
    Wang, Tian
    Yan, Daming
    Yu, Baozhu
    Zhou, Xingchen
    Ding, Xiangdong
    Yang, Yang
    Sun, Junjie
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (14) : 7477 - 7486
  • [27] Biomass Chitin Nanofiber Separators Proactively Stabilizing Zinc Anodes for Dendrite-Free Aqueous Zinc-Ion Batteries
    Wang, Qunhao
    Zhao, Jiangqi
    Zhang, Jian
    Li, Mei
    Tan, Feipeng
    Xue, Xiaolin
    Sui, Zengyan
    Zou, Yuefei
    Zhang, Xi
    Zhang, Wei
    Lu, Canhui
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (41)
  • [28] Sulfonated hydrogel electrolyte enables dendrite-free zinc-ion batteries
    Hu, Yingqi
    Wang, Zhan
    Li, Yingzhi
    Liu, Peiwen
    Liu, Xinlong
    Liang, Guangxian
    Zhang, Di
    Fan, Xin
    Lu, Zhouguang
    Wang, Wenxi
    Chemical Engineering Journal, 2024, 479
  • [29] Sulfonated hydrogel electrolyte enables dendrite-free zinc-ion batteries
    Hu, Yingqi
    Wang, Zhan
    Li, Yingzhi
    Liu, Peiwen
    Liu, Xinlong
    Liang, Guangxian
    Zhang, Di
    Fan, Xin
    Lu, Zhouguang
    Wang, Wenxi
    CHEMICAL ENGINEERING JOURNAL, 2024, 479
  • [30] Redistributing zinc-ion flux by constructing a hybrid conductor interface for dendrite-free zinc anode
    Pan, Linhai
    He, Haiyong
    Liu, Zixuan
    Hu, Peng
    Journal of Power Sources, 2022, 551