ConvBKI: Real-Time Probabilistic Semantic Mapping Network With Quantifiable Uncertainty

被引:2
|
作者
Wilson, Joey [1 ]
Fu, Yuewei [1 ]
Friesen, Joshua [1 ]
Ewen, Parker [1 ]
Capodieci, Andrew [2 ]
Jayakumar, Paramsothy [3 ]
Barton, Kira [1 ]
Ghaffari, Maani [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Appl Res Associates, Neya Syst Div, Warrendale, PA 15086 USA
[3] US Army, DEVCOM, Ground Vehicle Syst Ctr, Warren, MI 48397 USA
关键词
Semantics; Probabilistic logic; Bayes methods; Robots; Real-time systems; Reliability; Uncertainty; Autonomous robots; robot sensing systems; robot vision systems; simultaneous localization and mapping; MAP;
D O I
10.1109/TRO.2024.3453771
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this article, we develop a modular neural network for real-time (>10 Hz) semantic mapping in uncertain environments, which explicitly updates per-voxel probabilistic distributions within a neural network layer. Our approach combines the reliability of classical probabilistic algorithms with the performance and efficiency of modern neural networks. Although robotic perception is often divided between modern differentiable methods and classical explicit methods, a union of both is necessary for real-time and trustworthy performance. We introduce a novel convolutional Bayesian kernel inference (ConvBKI) layer which incorporates semantic segmentation predictions online into a 3-D map through a depthwise convolution layer by leveraging conjugate priors. We compare ConvBKI against state-of-the-art deep learning approaches and probabilistic algorithms for mapping to evaluate reliability and performance. We also create a robot operating system package of ConvBKI and test it on real-world perceptually challenging off-road driving data.
引用
收藏
页码:4648 / 4667
页数:20
相关论文
共 50 条
  • [1] Semantic Real-Time Mapping with UAVs
    Fanta-Jende, Phillipp
    Steininger, Daniel
    Kern, Alexander
    Widhalm, Verena
    Baca, Javier Apud G.
    Hofstaetter, Markus
    Simon, Julia
    Bruckmueller, Felix
    Sulzbachner, Christoph
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2023, 91 (03): : 157 - 170
  • [2] Semantic Real-Time Mapping with UAVs
    Phillipp Fanta-Jende
    Daniel Steininger
    Alexander Kern
    Verena Widhalm
    Javier G. Apud Baca
    Markus Hofstätter
    Julia Simon
    Felix Bruckmüller
    Christoph Sulzbachner
    PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2023, 91 : 157 - 170
  • [3] Uncertainty-Aware Boundary Attention Network for Real-Time Semantic Segmentation
    Zhu, Yuanbing
    Zhu, Bingke
    Chen, Yingying
    Wang, Jinqiao
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT III, 2024, 14427 : 388 - 400
  • [4] Real-Time Volumetric-Semantic Exploration and Mapping: An Uncertainty-Aware Approach
    de Figueiredo, Rui Pimentel
    Sejersen, Jonas le Fevre
    Hansen, Jakob Grimm
    Brandao, Martim
    Kayacan, Erdal
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 9064 - 9070
  • [5] MotionSC: Data Set and Network for Real-Time Semantic Mapping in Dynamic Environments
    Wilson, Joey
    Song, Jingyu
    Fu, Yuewei
    Zhang, Arthur
    Capodieci, Andrew
    Jayakumar, Paramsothy
    Barton, Kira
    Ghaffari, Maani
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03) : 8439 - 8446
  • [6] Real-Time Hand Tracking and Gesture Recognition Using Semantic-Probabilistic Network
    Kovalenko, Mykyta
    Antoshchuk, Svetlana
    Sieck, Juergen
    2014 UKSIM-AMSS 16TH INTERNATIONAL CONFERENCE ON COMPUTER MODELLING AND SIMULATION (UKSIM), 2014, : 269 - 274
  • [7] Hierarchical Semantic Broadcasting Network for Real-Time Semantic Segmentation
    Li, Genling
    Li, Liang
    Zhang, Jiawan
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 309 - 313
  • [8] Probabilistic Forecasting of Real-Time LMP and Network Congestion
    Ji, Yuting
    Thomas, Robert J.
    Tong, Lang
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (02) : 831 - 841
  • [9] Spatial-Semantic Fusion Network for Semantic Segmentation in Real-time
    Fang Yu
    Zhang Xuehe
    Zhang He
    Liu Gangfeng
    Li Changle
    Zhao Jie
    2019 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2019, : 30 - 35
  • [10] Bilateral network with rich semantic extractor for real-time semantic segmentation
    Shan Zhao
    Xuan Wu
    Kaiwen Tian
    Yang Yuan
    Complex & Intelligent Systems, 2024, 10 : 1899 - 1916