Green Synthetic NiCoP Nanoparticles Encapsulated in N-Doped Carbon for Water Splitting

被引:1
|
作者
Ye, Xin [1 ]
Zhang, Haodong [1 ]
Wu, Fan [1 ]
Ma, He [1 ]
Wu, Shaoyang [1 ]
Zhuge, Xiangqun [1 ]
Ren, Yurong [1 ]
Wei, Peng [1 ]
机构
[1] Changzhou Univ, Jiangsu Prov Engn Res Ctr Intelligent Mfg Technol, Sch Mat Sci & Engn, Technol New Energy Vehicle Power Battery, Changzhou 213164, Peoples R China
基金
中国国家自然科学基金;
关键词
Water splitting; Bimetallic phosphide; Oxygenevolution reaction; Hydrogen evolution reaction; Nanoconfined; HYDROGEN-EVOLUTION; PHOSPHIDE; ELECTROCATALYSTS;
D O I
10.1021/acsanm.4c04798
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Transition metal phosphides (TMPs) have drawn widespread attention as promising electrocatalysts due to their special electronic structure, good electrochemical activity, low cost, and high abundance. Although a great deal of effort has been expended in the pursuit of TMPs, the majority of synthesis processes are complex and hazardous due to the use of flammable and toxic phosphorus sources. Herein, we propose a nontoxic and scalable synthetic strategy for the synthesis of NiCoP@NC by using green and cheap diethylenetriaminepentakis (methylphosphonic acid) (DTPMP) as the phosphorus source. DTPMP can also act as a chelating agent and displays strong coordination ability with metal ions, thereby reducing particle size and forming nanoparticles. The NiCoP@NC exhibits outstanding stability and electrocatalytic activity in both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Furthermore, water electrolysis performance also is measured using NiCoP@NC as both anode and cathode, which delivers a cell voltage of 1.73 V at 10 mA<middle dot>cm-2 and can operate stably for 24 h. This work not only constructs efficient bifunctional catalysts, but also broadens the green synthesis method of nanosized TMPs, paving the way for further large-scale practical applications.
引用
收藏
页码:24897 / 24904
页数:8
相关论文
共 50 条
  • [1] Facile synthesis of CoSe nanoparticles encapsulated in N-doped carbon nanotubes-grafted N-doped carbon nanosheets for water splitting
    Yang, Ming
    Yang, Yuanyuan
    Wang, Kaizhi
    Li, Shuwen
    Feng, Fan
    Lan, Kai
    Jiang, Pengbo
    Huang, Xiaokang
    Yang, Honglei
    Li, Rong
    ELECTROCHIMICA ACTA, 2020, 337 (337)
  • [2] A Facile Synthesis of FeCo Nanoparticles Encapsulated in Hierarchical N-Doped Carbon Nanotube/Nanofiber Hybrids for Overall Water Splitting
    Aftab, Faryal
    Duran, Hatice
    Kirchhoff, Katrin
    Zaheer, Muhammad
    Iqbal, Bushra
    Saleem, Murtaza
    Arshad, Salman N.
    CHEMCATCHEM, 2020, 12 (03) : 932 - 943
  • [3] Bagasse derived N-doped graphitic carbon encapsulated cobalt nanoparticles as an efficient bifunctional catalyst for water splitting reactions
    Kalusulingam, Rajathsing
    Ravi, Krishnan
    Mathi, Selvam
    Mikhailova, T. S.
    Srinivasan, Kannan
    V. Biradar, Ankush
    Myasoedova, T. N.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 692
  • [4] N-doped carbon shell coated CoP nanocrystals encapsulated in porous N-doped carbon substrate as efficient electrocatalyst of water splitting
    Peng, Zhuo
    Yu, Yang
    Jiang, Dan
    Wu, Yule
    Xia, Bao Yu
    Dong, Zehua
    CARBON, 2019, 144 : 464 - 471
  • [5] NiCoP nanoparticles distributed on N-doped carbon-nanosheets loading on nickel phosphide as self-supporting electrode for efficient overall water splitting
    Gao, Hongwei
    Fan, Haoyang
    Wang, Xuan
    Li, Xue
    Song, Songsong
    Zang, Jianbing
    Han, Wei
    Ma, Chuang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 92 : 443 - 452
  • [6] Fe3C nanoparticles and carbon nanofiber decorated N-doped carbon framework for bifunctional water splitting
    Gao, X. E.
    Kao, G.
    Yu, J.
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2021, 16 (02) : 601 - 612
  • [7] Cr-Doped FeNi-P Nanoparticles Encapsulated into N-Doped Carbon Nanotube as a Robust Bifunctional Catalyst for Efficient Overall Water Splitting
    Wu, Yiqiang
    Tao, Xu
    Qing, Yan
    Xu, Han
    Yang, Fan
    Luo, Sha
    Tian, Cuihua
    Liu, Ming
    Lu, Xihong
    ADVANCED MATERIALS, 2019, 31 (15)
  • [8] N-doped carbon coated FeNiP nanoparticles based hollow microboxes for overall water splitting in alkaline medium
    Du, Yunmei
    Han, Yi
    Huai, Xudong
    Liu, Yanru
    Wu, Caiyun
    Yang, Yu
    Wang, Lei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (49) : 22226 - 22234
  • [9] MOF-derived MoC-Fe heterojunctions encapsulated in N-doped carbon nanotubes for water splitting
    Huang, Minghong
    Zhou, Shenghua
    Ma, Dong-Dong
    Wei, Wenbo
    Zhu, Qi-Long
    Huang, Zhenguo
    CHEMICAL ENGINEERING JOURNAL, 2023, 473
  • [10] Metal-Organic Framework-Derived CoxFe1-xP Nanoparticles Encapsulated in N-Doped Carbon as Efficient Bifunctional Electrocatalysts for Overall Water Splitting
    Chen, Jiahui
    Zhang, Yanfeng
    Ye, Huangqing
    Xie, Jin-Qi
    Li, Yunming
    Yan, Changzeng
    Sun, Rong
    Wong, Ching-Ping
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (04) : 2734 - 2742