Experimental investigation on the vented flame and pressure behaviour of hydrogen-air mixtures

被引:0
|
作者
Sheng, Yuhuai [1 ]
Luo, Zhenmin [1 ,2 ,3 ]
Liu, Litao [1 ]
Yang, Zhe [1 ]
Meng, Fan [1 ]
Dong, Zhe [1 ]
Zhang, Yanni [1 ]
Qu, Jiao [1 ]
Deng, Jun [4 ]
Wang, Tao [1 ,2 ,3 ]
机构
[1] Xian Univ Sci & Technol, Sch Safety Sci & Engn, 58 Yanta Mid Rd, Xian 710054, Shaanxi, Peoples R China
[2] Xian Key Lab Urban Publ Safety & Fire Rescue, 58 Yanta Mid Rd, Xian 710054, Shaanxi, Peoples R China
[3] Shaanxi Engn Res Ctr Ind Proc Safety & Emergency R, 58 Yanta Mid Rd, Xian 710054, Shaanxi, Peoples R China
[4] Shaanxi Key Lab Prevent & Control Coal Fire, 58 Yanta Mid Rd, Xian 710054, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen-air; Deflagration venting; Secondary explosion; Static activation pressure; Flame propagation; BURST PRESSURE; GAS-EXPLOSIONS; DEFLAGRATIONS; IGNITION; VESSEL; OVERPRESSURES; DUCT;
D O I
10.1016/j.jlp.2024.105469
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
To explore the changes in pressure and flame propagation inside and outside the vessel when the pipe diameter does not match the vent diameter, and to check the conservatism of standards NFPA 68 and EN 14491 for this case, an experimental apparatus was utilized to investigate the influences of static activation pressure (0.7-1.75 bar) and vent diameter (30-70 mm) on the deflagration behavior of hydrogen-air mixtures (Phi: 0.6-1.4). The vented pressure, flame propagation, and pressure-flame interaction characteristics of hydrogen-air mixtures were observed and analyzed. Additionally, the conservatism of the calculated venting area under the experimental conditions of NPFA 68 and EN 14491 was verified. The results indicated that under an equivalence ratio of 0.6, the pressure-time curve inside the container exhibited only one peak (Pmax11). In the stoichiometric and fuel-rich states, the pressure-time curve inside the container exhibited two peaks attributed to the decrease in venting efficiency due to the secondary explosion inside the pipe, increasing the turbulence intensity within the container. When the static activation pressure is 0.7 bar, the pressures of the three vent diameters of 30, 50 and 70 dropped by 11.34%, 24.38% and 26.86% respectively. And the Pmax11 at Phi = 1.0 and Phi = 1.4 are similar, while this phenomenon is not observed for other vent diameters. When the vent diameter was inconsistent with the duct diameter. the calculations of both standards were conservative. However, under these testing conditions (vent diameter: 30-70 mm, static activation pressure: 0.7-1.75 bar), the NPFA 68 calculations yield a conservatism range of 3.3-11, whereas EN14491 ranges from 1.6 to 15.7. The NPFA 68 results were more stable and concentrated, making these conditions more suitable for industry safety design in hydrogen venting.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Ignition of hydrogen-air mixtures over Pt at atmospheric pressure
    Rubtsov, Nikolai M.
    Chernysh, Victor I.
    Tsvetkov, Georgii I.
    Troshin, Kirill Ya.
    Shamshin, Igor O.
    MENDELEEV COMMUNICATIONS, 2017, 27 (03) : 307 - 309
  • [42] EXPERIMENTAL DETONATION VELOCITIES AND INDUCTION DISTANCES IN HYDROGEN-AIR MIXTURES
    BOLLINGER, LE
    AIAA JOURNAL, 1964, 2 (01) : 131 - 133
  • [43] Effect of vent size on explosion overpressure and flame behavior during vented hydrogen-air mixture deflagrations
    Tang, Zesi
    Li, Jialin
    Guo, Jin
    Zhang, Su
    Duan, Zaipeng
    NUCLEAR ENGINEERING AND DESIGN, 2020, 361
  • [44] Experimental and numerical investigation of premixed hydrogen-air explosion suppression by heptafluoropropane and carbon dioxide mixtures
    Nie, Baisheng
    Zhang, Mengying
    Chang, Li
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 94 : 1094 - 1105
  • [45] Flame reactions - Selenium and tellurium in the hydrogen-air flame
    Papish, J
    JOURNAL OF PHYSICAL CHEMISTRY, 1918, 22 (09): : 640 - 646
  • [46] INVESTIGATION OF METALLIC COPPER-CHLORIDE INTERACTION IN A HYDROGEN-AIR FLAME
    TOMKINS, DF
    FRANK, CW
    ANALYTICAL CHEMISTRY, 1974, 46 (09) : 1187 - 1190
  • [47] Numerical study of the effects of heterogeneous recombination and heterogeneous initiation on flame propagation in hydrogen-air mixtures at atmospheric pressure
    Rubtsov, N. M.
    Seplyarskii, B. S.
    THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2010, 44 (03) : 272 - 278
  • [48] Numerical study of the effects of heterogeneous recombination and heterogeneous initiation on flame propagation in hydrogen-air mixtures at atmospheric pressure
    N. M. Rubtsov
    B. S. Seplyarskii
    Theoretical Foundations of Chemical Engineering, 2010, 44 : 272 - 278
  • [49] Experimental and kinetic analyses on the flame dynamics and stabilization of ammonia/hydrogen-air mixtures in a micro-planar combustor
    Cai, Tao
    Tang, Aikun
    Li, Chong
    CHEMICAL ENGINEERING JOURNAL, 2023, 477
  • [50] Experimental and numerical study on laminar burning velocities and flame instabilities of hydrogen-air mixtures at elevated pressures and temperatures
    Hu, Erjiang
    Huang, Zuohua
    He, Jiajia
    Miao, Haiyan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (20) : 8741 - 8755