Multimodal Machine Learning for Stroke Prognosis and Diagnosis: A Systematic Review
被引:8
作者:
论文数: 引用数:
h-index:
机构:
Shurrab, Saeed
[1
]
Guerra-Manzanares, Alejandro
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ Abu Dhabi, Comp Engn Div, Abu Dhabi 129188, U Arab EmiratesNew York Univ Abu Dhabi, Comp Engn Div, Abu Dhabi 129188, U Arab Emirates
Guerra-Manzanares, Alejandro
[1
]
Magid, Amani
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ Abu Dhabi, Sci & Engn Lib, Abu Dhabi 129188, U Arab EmiratesNew York Univ Abu Dhabi, Comp Engn Div, Abu Dhabi 129188, U Arab Emirates
Magid, Amani
[2
]
Piechowski-Jozwiak, Bartlomiej
论文数: 0引用数: 0
h-index: 0
机构:
Cleveland Clin Abu Dhabi, Neurol Inst, Abu Dhabi 112412, U Arab EmiratesNew York Univ Abu Dhabi, Comp Engn Div, Abu Dhabi 129188, U Arab Emirates
Piechowski-Jozwiak, Bartlomiej
[3
]
Atashzar, S. Farokh
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Mech & Aerosp Engn, Elect & Comp Engn, New York, NY 11201 USANew York Univ Abu Dhabi, Comp Engn Div, Abu Dhabi 129188, U Arab Emirates
Atashzar, S. Farokh
[4
]
Shamout, Farah E.
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ Abu Dhabi, Comp Engn Div, Abu Dhabi 129188, U Arab EmiratesNew York Univ Abu Dhabi, Comp Engn Div, Abu Dhabi 129188, U Arab Emirates
Shamout, Farah E.
[1
]
机构:
[1] New York Univ Abu Dhabi, Comp Engn Div, Abu Dhabi 129188, U Arab Emirates
[2] New York Univ Abu Dhabi, Sci & Engn Lib, Abu Dhabi 129188, U Arab Emirates
[3] Cleveland Clin Abu Dhabi, Neurol Inst, Abu Dhabi 112412, U Arab Emirates
[4] NYU, Mech & Aerosp Engn, Elect & Comp Engn, New York, NY 11201 USA
Stroke (medical condition);
Prognostics and health management;
Imaging;
Medical diagnostic imaging;
Deep learning;
Medical services;
Diseases;
Stroke;
multimodal clinical data;
machine learning;
deep learning;
ACUTE ISCHEMIC-STROKE;
ARTIFICIAL-INTELLIGENCE;
LESION SEGMENTATION;
PREDICTION;
OCCLUSION;
FUSION;
CT;
D O I:
10.1109/JBHI.2024.3448238
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Stroke is a life-threatening medical condition that could lead to mortality or significant sensorimotor deficits. Various machine learning techniques have been successfully used to detect and predict stroke-related outcomes. Considering the diversity in the type of clinical modalities involved during management of patients with stroke, such as medical images, bio-signals, and clinical data, multimodal machine learning has become increasingly popular. Thus, we conducted a systematic literature review to understand the current status of state-of-the-art multimodal machine learning methods for stroke prognosis and diagnosis. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines during literature search and selection, our results show that the most dominant techniques are related to the fusion paradigm, specifically early, joint and late fusion. We discuss opportunities to leverage other multimodal learning paradigms, such as multimodal translation and alignment, which are generally less explored. We also discuss the scale of datasets and types of modalities used to develop existing models, highlighting opportunities for the creation of more diverse multimodal datasets. Finally, we present ongoing challenges and provide a set of recommendations to drive the next generation of multimodal learning methods for improved prognosis and diagnosis of patients with stroke.
机构:
Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
Stanford Univ, Ctr Artificial Intelligence Med & Imaging, Stanford, CA 94305 USAStanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
Huang, Shih-Cheng
;
Pareek, Anuj
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Ctr Artificial Intelligence Med & Imaging, Stanford, CA 94305 USA
Stanford Univ, Dept Radiol, Stanford, CA 94305 USAStanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
Pareek, Anuj
;
Seyyedi, Saeed
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Ctr Artificial Intelligence Med & Imaging, Stanford, CA 94305 USA
Stanford Univ, Dept Radiol, Stanford, CA 94305 USAStanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
Seyyedi, Saeed
;
Banerjee, Imon
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Ctr Artificial Intelligence Med & Imaging, Stanford, CA 94305 USA
Emory Univ, Dept Biomed Informat, Atlanta, GA 30322 USA
Emory Univ, Dept Radiol, Atlanta, GA 30322 USAStanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
Banerjee, Imon
;
Lungren, Matthew P.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
Stanford Univ, Ctr Artificial Intelligence Med & Imaging, Stanford, CA 94305 USA
Stanford Univ, Dept Radiol, Stanford, CA 94305 USAStanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
Kononenko I, 1997, Machine learning: Proceedings of the Fourteenth International Conference (ICML'97), P296, DOI [10.1119/1.880454, DOI 10.1119/1.880454]
机构:
Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
Stanford Univ, Ctr Artificial Intelligence Med & Imaging, Stanford, CA 94305 USAStanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
Huang, Shih-Cheng
;
Pareek, Anuj
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Ctr Artificial Intelligence Med & Imaging, Stanford, CA 94305 USA
Stanford Univ, Dept Radiol, Stanford, CA 94305 USAStanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
Pareek, Anuj
;
Seyyedi, Saeed
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Ctr Artificial Intelligence Med & Imaging, Stanford, CA 94305 USA
Stanford Univ, Dept Radiol, Stanford, CA 94305 USAStanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
Seyyedi, Saeed
;
Banerjee, Imon
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Ctr Artificial Intelligence Med & Imaging, Stanford, CA 94305 USA
Emory Univ, Dept Biomed Informat, Atlanta, GA 30322 USA
Emory Univ, Dept Radiol, Atlanta, GA 30322 USAStanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
Banerjee, Imon
;
Lungren, Matthew P.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
Stanford Univ, Ctr Artificial Intelligence Med & Imaging, Stanford, CA 94305 USA
Stanford Univ, Dept Radiol, Stanford, CA 94305 USAStanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
Kononenko I, 1997, Machine learning: Proceedings of the Fourteenth International Conference (ICML'97), P296, DOI [10.1119/1.880454, DOI 10.1119/1.880454]