Active thermography for in-situ defect detection in laser powder bed fusion of metal

被引:0
|
作者
Hoefflin, Dennis [1 ,3 ]
Sauer, Christian [1 ,3 ]
Schiffler, Andreas [1 ,3 ]
Versch, Alexander [1 ,3 ]
Hartmann, Juergen [1 ,2 ]
机构
[1] Tech Univ Appl Sci Wurzburg Schweinfurt, Ignaz Schon Str 11, D-97421 Schweinfurt, Germany
[2] Ctr Appl Energy Res eV CAE, Magdalene Schoch Str 3, D-97074 Wurzburg, Germany
[3] Technol Transfer Ctr Main Spessart, Spessartstr 1, D-97828 Marktheidenfeld, Germany
关键词
Active thermography; PBF-LB/M; Non-destructive testing; SPIT; Process monitoring; MANUFACTURED COMPONENTS; ACOUSTIC-EMISSION; ULTRASOUND; POROSITY;
D O I
10.1016/j.jmapro.2024.09.085
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive manufacturing (AM) has revolutionized production by offering design flexibility, reducing material waste, and enabling intricate geometries that are often unachievable with traditional methods. As the use of AM for metals continues to expand, it is crucial to ensure the quality and integrity of printed components. Defects can compromise the mechanical properties and performance of the final product. Non-destructive testing (NDT) techniques are necessary to detect and characterize anomalies during or post-manufacturing. Active thermography, a thermal imaging technique that uses an external energy source to induce temperature variations, has emerged as a promising tool in this field. This paper explores the potential of in-situ non-destructive testing using the processing laser of a PBF-LB/M setup as an excitation source for active thermography. With this technological approach, artificially generated internal defects underneath an intact surface can be detected down to a defect size of 350 mu m - 450 mu m.
引用
收藏
页码:1758 / 1769
页数:12
相关论文
共 50 条
  • [21] On the Registration of Thermographic In Situ Monitoring Data and Computed Tomography Reference Data in the Scope of Defect Prediction in Laser Powder Bed Fusion
    Oster, Simon
    Fritsch, Tobias
    Ulbricht, Alexander
    Mohr, Gunther
    Bruno, Giovanni
    Maierhofer, Christiane
    Altenburg, Simon J.
    METALS, 2022, 12 (06)
  • [22] Digital twins for rapid in-situ qualification of part quality in laser powder bed fusion additive manufacturing
    Bevans, Benjamin D.
    Carrington, Antonio
    Riensche, Alex
    Tenequer, Adriane
    Barrett, Christopher
    Halliday, Harold
    Srinivasan, Raghavan
    Cole, Kevin D.
    Rao, Prahalada
    ADDITIVE MANUFACTURING, 2024, 93
  • [23] Layerwise Anomaly Detection in Laser Powder-Bed Fusion Metal Additive Manufacturing
    Mahmoudi, Mohamad
    Ezzat, Ahmed Aziz
    Elwany, Alaa
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2019, 141 (03):
  • [24] In situ detection of cracks during laser powder bed fusion using acoustic emission monitoring
    Seleznev, Mikhail
    Gustmann, Tobias
    Friebel, Judith Miriam
    Peuker, Urs Alexander
    Kuehn, Uta
    Hufenbach, Julia Kristin
    Biermann, Horst
    Weidner, Anja
    ADDITIVE MANUFACTURING LETTERS, 2022, 3
  • [25] A defect detection framework using three-dimensional convolutional neural network (3D-CNN) with in-situ monitoring data in laser powder bed fusion process
    Lee, Kang-Hyun
    Lee, Han Wool
    Yun, Gun Jin
    OPTICS AND LASER TECHNOLOGY, 2023, 165
  • [26] In-situ electron beam characterization for electron beam powder bed fusion
    Markl, Matthias
    Tinat, Mohammad Reza Azadi
    Berger, Timo
    Westrich, Yannic
    Renner, Jakob
    Koerner, Carolin
    ADDITIVE MANUFACTURING, 2024, 96
  • [27] Optical tomography and machine learning for in-situ defects detection in laser powder bed fusion: A self-organizing map and U-Net based approach
    Ero, Osazee
    Taherkhani, Katayoon
    Toyserkani, Ehsan
    ADDITIVE MANUFACTURING, 2023, 78
  • [28] Optimizing in-situ monitoring for laser powder bed fusion process: Deciphering acoustic emission and sensor sensitivity with explainable machine learning
    Pandiyan, Vigneashwara
    Wrobel, Rafal
    Leinenbach, Christian
    Shevchik, Sergey
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2023, 321
  • [29] Fracture behavior of laser powder bed fusion fabricated Ti41Nb via in-situ alloying
    Huang, Sheng
    Kumar, Punit
    Yeong, Wai Yee
    Narayan, R. Lakshmi
    Ramamurty, Upadrasta
    ACTA MATERIALIA, 2022, 225
  • [30] In situ defect detection in selective laser melting via full-field infrared thermography
    Bartlett, Jamison L.
    Heim, Frederick M.
    Murty, Yellapu V.
    Li, Xiaodong
    ADDITIVE MANUFACTURING, 2018, 24 : 595 - 605