Regularization of Linear Inverse Problems with Irregular Noise Using Embedding Operators

被引:1
作者
Li, Xinyan [1 ]
Hubmer, Simon [2 ,3 ]
Lu, Shuai [1 ]
Ramlau, Ronny [3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Johann Radon Inst Computat & Appl Math, Altenbergerstr 69, A-4040 Linz, Austria
[3] Johannes Kepler Univ Linz, Inst Angew Phys, Altenbergerstr 69, A-4040 Linz, Austria
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2024年 / 17卷 / 04期
基金
奥地利科学基金会; 中国国家自然科学基金;
关键词
linear inverse problems; embedding operators; irregular noise; regularization theory; computerized tomography; FOURIER RECONSTRUCTION; IMAGE-RECONSTRUCTION; COMPUTED-TOMOGRAPHY; SELECTION; PARAMETER;
D O I
10.1137/24M1636307
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we investigate regularization of linear inverse problems with irregular noise. In particular, we consider the case that the noise can be preprocessed by certain adjoint embedding operators. By introducing the consequent preprocessed problem, we provide convergence analysis for general regularization schemes under standard assumptions. Furthermore, for a special case of Tikhonov regularization in computerized tomography, we show that our approach leads to a novel (Fourier- based) filtered backprojection algorithm. Numerical examples with different parameter choice rules verify the efficiency of our proposed algorithm.
引用
收藏
页码:2053 / 2075
页数:23
相关论文
共 40 条