Inter-product biases in extreme precipitation duration and frequency across China

被引:1
作者
Lu, Jiayi [1 ]
Wang, Kaicun [2 ]
Wu, Guocan [1 ]
Ye, Aizhong [1 ]
Mao, Yuna [1 ]
机构
[1] Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing, Peoples R China
[2] Peking Univ, Sino French Inst Earth Syst Sci, Coll Urban & Environm Sci, Beijing, Peoples R China
来源
ENVIRONMENTAL RESEARCH LETTERS | 2024年 / 19卷 / 11期
关键词
extreme precipitation indices; accuracy evaluation; gauge-based products; satellite-based products; reanalysis; SATELLITE RAINFALL PRODUCTS; GRIDDED PRECIPITATION; REANALYSIS PRODUCTS; CLIMATE-CHANGE; TEMPERATURE; TRENDS; INTENSITY; INDEXES; GAUGE; BASIN;
D O I
10.1088/1748-9326/ad7f73
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurately delineating the duration and frequency characteristics of extreme precipitation is vital for assessing climate change risks. This study reassesses the spatiotemporal variations in the frequency and persistence indices of extreme precipitation from 2001 to 2019 across thirteen widely used precipitation datasets. We quantify the inter-product biases using common accuracy indices based on reference data, derived from a national observation network of over 2400 stations. Regarding the duration of extreme precipitation, represented by consecutive dry days (CDD) and consecutive wet days (CWD), gauge-based datasets generally demonstrate better accuracy. Satellite retrieval datasets tend to overestimate CDD (4.58%) and CWD (60.50%) at continental scale. Meanwhile, reanalysis and fusion datasets tend to underestimate CDD (-30.27% and -15.39%, respectively) and overestimate CWD (148.44% and 93.41%, respectively). In terms of frequency indices, represented by the number of heavy precipitation days (R10MM) and the number of very heavy precipitation days (R20MM), gauge-based, satellite retrieval, and fusion datasets show weak biases in R10MM (all below 3.5%), while reanalysis datasets indicate substantial overestimation (33.62%). In the case of R20MM, there is an improvement in the performance of reanalysis datasets, while the performance of other datasets declines. However, almost all datasets fail to consistently capture variations in the Tibetan Plateau and Xinjiang regions, where gauge stations are limited and terrain is complex. Furthermore, multiple datasets present significant discrepancies in temporal trends from 2001 to 2019. Remote sensing datasets tend to overestimate CDD, while reanalysis datasets generally show persistent underestimation of CDD and persistent overestimation of other indices. This research contributes to guiding the application and improvement of global precipitation datasets in extreme precipitation studies.
引用
收藏
页数:13
相关论文
共 72 条
[1]   Intercomparison of annual precipitation indices and extremes over global land areas from in situ, space-based and reanalysis products [J].
Alexander, Lisa, V ;
Bador, Margot ;
Roca, Remy ;
Contractor, Steefan ;
Donat, Markus G. ;
Nguyen, Phuong Loan .
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (05)
[2]   On the use of indices to study extreme precipitation on sub-daily and daily timescales [J].
Alexander, Lisa, V ;
Fowler, Hayley J. ;
Bador, Margot ;
Behrangi, Ali ;
Donat, Markus G. ;
Dunn, Robert ;
Funk, Chris ;
Goldie, James ;
Lewis, Elizabeth ;
Roge, Marine ;
Seneviratne, Sonia, I ;
Venugopal, V. .
ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (12)
[3]   Global observed changes in daily climate extremes of temperature and precipitation [J].
Alexander, LV ;
Zhang, X ;
Peterson, TC ;
Caesar, J ;
Gleason, B ;
Tank, AMGK ;
Haylock, M ;
Collins, D ;
Trewin, B ;
Rahimzadeh, F ;
Tagipour, A ;
Kumar, KR ;
Revadekar, J ;
Griffiths, G ;
Vincent, L ;
Stephenson, DB ;
Burn, J ;
Aguilar, E ;
Brunet, M ;
Taylor, M ;
New, M ;
Zhai, P ;
Rusticucci, M ;
Vazquez-Aguirre, JL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D5)
[4]   Atmospheric warming and the amplification of precipitation extremes [J].
Allan, Richard P. ;
Soden, Brian J. .
SCIENCE, 2008, 321 (5895) :1481-1484
[5]   PERSIANN-CDR Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies [J].
Ashouri, Hamed ;
Hsu, Kuo-Lin ;
Sorooshian, Soroosh ;
Braithwaite, Dan K. ;
Knapp, Kenneth R. ;
Cecil, L. Dewayne ;
Nelson, Brian R. ;
Prat, Olivier P. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2015, 96 (01) :69-+
[6]   Diverse estimates of annual maxima daily precipitation in 22 state-of-the-art quasi-global land observation datasets [J].
Bador, Margot ;
Alexander, Lisa V. ;
Contractor, Steefan ;
Roca, Remy .
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (03)
[7]   MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment [J].
Beck, Hylke E. ;
Wood, Eric F. ;
Pan, Ming ;
Fisher, Colby K. ;
Miralles, Diego G. ;
van Dijk, Albert I. J. M. ;
McVicar, Tim R. ;
Adler, Robert F. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2019, 100 (03) :473-502
[8]   Impact of bias correction to reanalysis products on simulations of North American soil moisture and hydrological fluxes [J].
Berg, AA ;
Famiglietti, JS ;
Walker, JP ;
Houser, PR .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D16)
[9]   Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China [J].
Chen, Sheng ;
Hong, Yang ;
Cao, Qing ;
Gourley, Jonathan J. ;
Kirstetter, Pierre-Emmanuel ;
Yong, Bin ;
Tian, Yudong ;
Zhang, Zengxin ;
Shen, Yan ;
Hu, Junjun ;
Hardy, Jill .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (23) :13060-13074
[10]   Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America [J].
de los Milagros Skansi, Maria ;
Brunet, Manola ;
Sigro, Javier ;
Aguilar, Enric ;
Arevalo Groening, Juan Andres ;
Bentancur, Oscar J. ;
Castellon Geier, Yaruska Rosa ;
Correa Amaya, Ruth Leonor ;
Jacome, Homero ;
Malheiros Ramos, Andrea ;
Oria Rojas, Clara ;
Max Pasten, Alejandro ;
Mitro, Sukarni Sallons ;
Villaroel Jimenez, Claudia ;
Martinez, Rodney ;
Alexander, Lisa V. ;
Jones, P. D. .
GLOBAL AND PLANETARY CHANGE, 2013, 100 :295-307