Client Selection for Wireless Federated Learning With Data and Latency Heterogeneity

被引:0
|
作者
Chen, Xiaobing [1 ]
Zhou, Xiangwei [1 ]
Zhang, Hongchao [2 ]
Sun, Mingxuan [3 ]
Vincent Poor, H. [4 ]
机构
[1] Louisiana State Univ, Div Elect & Comp Engn, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[3] Louisiana State Univ, Div Comp Sci & Engn, Baton Rouge, LA 70803 USA
[4] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 70803 USA
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 19期
基金
美国国家科学基金会;
关键词
Training; Federated learning; Computational modeling; Data models; Convergence; Servers; Probabilistic logic; Client selection; data heterogeneity; federated learning; latency heterogeneity; optimization;
D O I
10.1109/JIOT.2024.3425757
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning is a distributed machine learning paradigm that allows multiple edge devices to collaboratively train a shared model without exchanging raw data. However, the training efficiency of federated learning is highly dependent on client selection. Moreover, due to the varying wireless communication environments and various computation latencies among the clients, selecting clients randomly or uniformly may not be optimal for balancing the data diversity and training efficiency. In this article, we formulate a new latency-minimization problem that simultaneously optimizes client selection and training procedures in federated learning, which takes into account the data and latency heterogeneity among the clients. Given the nonconvexity of the problem, we derive a new convergence upper bound for federated learning with probabilistic client selection. To solve the mixed integer nonlinear programming problem, we introduce a hybrid solution that integrates grid search techniques with the polyhedral active set algorithm. Numerical analyses and experiments on real-world data demonstrate that our scheme outperforms the existing ones in terms of overall training latency and achieves up to three times acceleration over random client selection, especially in scenarios with highly heterogeneous data and latencies among the clients.
引用
收藏
页码:32183 / 32196
页数:14
相关论文
共 50 条
  • [31] Optimizing Privacy and Latency Tradeoffs in Split Federated Learning Over Wireless Networks
    Lee, Joohyung
    Seif, Mohamed
    Cho, Jungchan
    Poor, H. Vincent
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (12) : 3439 - 3443
  • [32] Latency-Efficient Wireless Federated Learning With Spasification and Quantization for Heterogeneous Devices
    Chen, Xuechen
    Wang, Aixiang
    Deng, Xiaoheng
    Gui, Jinsong
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (01): : 488 - 501
  • [33] Knowledge Caching for Federated Learning in Wireless Cellular Networks
    Zheng, Xin-Ying
    Lee, Ming-Chun
    Hsu, Kai-Chieh
    Hong, Y. -W. Peter
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (08) : 9235 - 9250
  • [34] A review on client selection models in federated learning
    Panigrahi, Monalisa
    Bharti, Sourabh
    Sharma, Arun
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 13 (06)
  • [35] Privacy-Preserving Data Selection for Horizontal and Vertical Federated Learning
    Zhang, Lan
    Li, Anran
    Peng, Hongyi
    Han, Feng
    Huang, Fan
    Li, Xiang-Yang
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 35 (11) : 2054 - 2068
  • [36] Online Client Selection for Asynchronous Federated Learning With Fairness Consideration
    Zhu, Hongbin
    Zhou, Yong
    Qian, Hua
    Shi, Yuanming
    Chen, Xu
    Yang, Yang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (04) : 2493 - 2506
  • [37] Joint Client Selection and Bandwidth Allocation Algorithm for Federated Learning
    Ko, Haneul
    Lee, Jaewook
    Seo, Sangwon
    Pack, Sangheon
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (06) : 3380 - 3390
  • [38] An Efficient Client Selection for Wireless Federated Learning
    Chen, Jingyi
    Wang, Qiang
    Zhang, Wenqi
    2023 28TH ASIA PACIFIC CONFERENCE ON COMMUNICATIONS, APCC 2023, 2023, : 291 - 296
  • [39] Heterogeneous Privacy Level-Based Client Selection for Hybrid Federated and Centralized Learning in Mobile Edge Computing
    Solat, Faranaksadat
    Patni, Sakshi
    Lim, Sunhwan
    Lee, Joohyung
    IEEE ACCESS, 2024, 12 : 108556 - 108572
  • [40] Reputation-Aware Federated Learning Client Selection Based on Stochastic Integer Programming
    Tan, Xavier
    Ng, Wei
    Lim, Wei
    Xiong, Zehui
    Niyato, Dusit
    Yu, Han
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (06) : 953 - 964