Client Selection for Wireless Federated Learning With Data and Latency Heterogeneity

被引:0
|
作者
Chen, Xiaobing [1 ]
Zhou, Xiangwei [1 ]
Zhang, Hongchao [2 ]
Sun, Mingxuan [3 ]
Vincent Poor, H. [4 ]
机构
[1] Louisiana State Univ, Div Elect & Comp Engn, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[3] Louisiana State Univ, Div Comp Sci & Engn, Baton Rouge, LA 70803 USA
[4] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 70803 USA
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 19期
基金
美国国家科学基金会;
关键词
Training; Federated learning; Computational modeling; Data models; Convergence; Servers; Probabilistic logic; Client selection; data heterogeneity; federated learning; latency heterogeneity; optimization;
D O I
10.1109/JIOT.2024.3425757
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning is a distributed machine learning paradigm that allows multiple edge devices to collaboratively train a shared model without exchanging raw data. However, the training efficiency of federated learning is highly dependent on client selection. Moreover, due to the varying wireless communication environments and various computation latencies among the clients, selecting clients randomly or uniformly may not be optimal for balancing the data diversity and training efficiency. In this article, we formulate a new latency-minimization problem that simultaneously optimizes client selection and training procedures in federated learning, which takes into account the data and latency heterogeneity among the clients. Given the nonconvexity of the problem, we derive a new convergence upper bound for federated learning with probabilistic client selection. To solve the mixed integer nonlinear programming problem, we introduce a hybrid solution that integrates grid search techniques with the polyhedral active set algorithm. Numerical analyses and experiments on real-world data demonstrate that our scheme outperforms the existing ones in terms of overall training latency and achieves up to three times acceleration over random client selection, especially in scenarios with highly heterogeneous data and latencies among the clients.
引用
收藏
页码:32183 / 32196
页数:14
相关论文
共 50 条
  • [21] Learning Efficiency Maximization for Wireless Federated Learning With Heterogeneous Data and Clients
    Ouyang, Jinhao
    Liu, Yuan
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (06) : 2282 - 2295
  • [22] Client Selection for Generalization in Accelerated Federated Learning: A Multi-Armed Bandit Approach
    Ben Ami, Dan
    Cohen, Kobi
    Zhao, Qing
    IEEE ACCESS, 2025, 13 : 33697 - 33713
  • [23] Delay-Constrained Client Selection for Heterogeneous Federated Learning in Intelligent Transportation Systems
    Zhang, Weiwen
    Chen, Yanxi
    Jiang, Yifeng
    Liu, Jianqi
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (01): : 1042 - 1054
  • [24] FedSCS: Client Selection for Federated Learning Under System Heterogeneity and Client Fairness with a Stackelberg Game Approach
    Yin, Tong
    Li, Lixin
    Lin, Wensheng
    Liang, Wei
    Li, Xu
    Han, Zhu
    2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 373 - 378
  • [25] Context-Aware Online Client Selection for Hierarchical Federated Learning
    Qu, Zhe
    Duan, Rui
    Chen, Lixing
    Xu, Jie
    Lu, Zhuo
    Liu, Yao
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (12) : 4353 - 4367
  • [26] Joint Client-and-Sample Selection for Federated Learning via Bi-Level Optimization
    Li, Anran
    Wang, Guangjing
    Hu, Ming
    Sun, Jianfei
    Zhang, Lan
    Tuan, Luu Anh
    Yu, Han
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 15196 - 15209
  • [27] FedAEB: Deep Reinforcement Learning Based Joint Client Selection and Resource Allocation Strategy for Heterogeneous Federated Learning
    Zheng, Feng
    Sun, Yuze
    Ni, Bin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (06) : 8835 - 8846
  • [28] Node Selection Toward Faster Convergence for Federated Learning on Non-IID Data
    Wu, Hongda
    Wang, Ping
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (05): : 3099 - 3111
  • [29] GraphCS: Graph-based client selection for heterogeneity in federated learning
    Chang, Tao
    Li, Li
    Wu, MeiHan
    Yu, Wei
    Wang, Xiaodong
    Xu, ChengZhong
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2023, 177 : 131 - 143
  • [30] Addressing Heterogeneity in Federated Learning with Client Selection via Submodular Optimization
    Zhang, Jinghui
    Wang, Jiawei
    Li, Yaning
    Xin, Fa
    Dong, Fang
    Luo, Junzhou
    Wu, Zhihua
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2024, 20 (02)