SVM Kernel and Genetic Feature Selection Based Automated Diagnosis of Breast Cancer

被引:0
|
作者
Singh I. [1 ]
Garg S. [1 ]
Arora S. [1 ]
Arora N. [1 ]
Agrawal K. [1 ]
机构
[1] Department of Computer Science and Engineering Delhi Technological University Delhi, India
关键词
Breast Cancer; Diagnosis; Feature Selection; Genetic Programming; Machine Learning; Support Vector Machines;
D O I
10.2174/2666255813999200818204842
中图分类号
学科分类号
摘要
Background: Breast cancer is the development of a malignant tumor in the breast of human beings (especially females). If not detected at the initial stages, it can substantially lead to an inoperable construct. It is a reason for the majority of cancer-related deaths throughout the world. Objectives: The main aim of this study is to diagnose breast cancer at an early stage so that the required treatment can be provided for survival. The tumor is classified as malignant or benign accurately at an early stage using a novel approach that includes an ensemble of the Genetic Algorithm for feature selection and kernel selection for SVM-Classifier. Methods: The proposed GA-SVM (Genetic Algorithm – Support Vector Machine) algorithm in this paper optimally selects the most appropriate features for training with the SVM classifier. Genetic Programming is used to select the features and the kernel for the SVM classifier. The Genetic Algorithm operates by exploring the optimal layout of features for breast cancer, thus, subjugating the problems faced in exponentially immense feature space. Results: The proposed approach accounts for a mean accuracy of 98.82% by using the Wisconsin Diagnostic Breast Cancer (WDBC) dataset available on UCI with the training and testing ratio being 50:50, respectively. Conclusion: The results prove that the proposed model outperforms the previously designed models for breast cancer diagnosis. The outcome assures that the GA-SVM model may be used as an effective tool in assisting the doctors in treating the patients. Alternatively, it may be utilized as an alternate opinion in their eventual diagnosis. © 2021 Bentham Science Publishers.
引用
收藏
页码:2875 / 2885
页数:10
相关论文
共 50 条
  • [21] Neural Network Classifier with Entropy Based Feature Selection on Breast Cancer Diagnosis
    Huang, Mei-Ling
    Hung, Yung-Hsiang
    Chen, Wei-Yu
    JOURNAL OF MEDICAL SYSTEMS, 2010, 34 (05) : 865 - 873
  • [22] Neural Network Classifier with Entropy Based Feature Selection on Breast Cancer Diagnosis
    Mei-Ling Huang
    Yung-Hsiang Hung
    Wei-Yu Chen
    Journal of Medical Systems, 2010, 34 : 865 - 873
  • [23] Feature selection and classification of breast cancer diagnosis based on support vector machines
    Purnami, Santi Wulan
    Rahayu, S. P.
    Embong, Abdullah
    INTERNATIONAL SYMPOSIUM OF INFORMATION TECHNOLOGY 2008, VOLS 1-4, PROCEEDINGS: COGNITIVE INFORMATICS: BRIDGING NATURAL AND ARTIFICIAL KNOWLEDGE, 2008, : 500 - 505
  • [24] Comparison of Machine Learning Classifiers for Breast Cancer Diagnosis Based on Feature Selection
    Liu, Bo
    Li, Xingrui
    Li, Jianqiang
    Li, Yong
    Lang, Jianlei
    Gu, Rentao
    Wang, Fei
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 4385 - 4390
  • [25] Wavelet Statistical Feature Selection Using Genetic Algorithm with Fuzzy Classifier for Breast Cancer Diagnosis
    Pawar, Meenakshi M.
    Talbar, Sanjay N.
    PROGRESS IN INTELLIGENT COMPUTING TECHNIQUES: THEORY, PRACTICE, AND APPLICATIONS, VOL 1, 2018, 518 : 95 - 105
  • [26] Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets
    Aalaei, Shokoufeh
    Shahraki, Hadi
    Rowhanimanesh, Alireza
    Eslami, Saeid
    IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES, 2016, 19 (05) : 476 - 482
  • [27] Multi-scoring Feature selection method based on SVM-RFE for prostate cancer diagnosis
    Albashish, Dheeb
    Sahran, Shahnorbanun
    Abdullah, Azizi
    Adam, Afzan
    Abd Shukor, Nordashima
    Pauzi, Suria Hayati Md
    5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATICS 2015, 2015, : 682 - 686
  • [28] Feature Selection and the Fusion-based Method for Enhancing the Classification Accuracy of SVM for Breast Cancer Detection
    Ahmed, Ali
    Malebary, Sharaf J.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2019, 19 (11): : 55 - 60
  • [29] Feature selection algorithm based on SVM
    Sun Jiongjiong
    Liu Jun
    Wei Xuguang
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 4113 - 4116
  • [30] Feature Selection based on Fuzzy SVM
    Xia, Hong
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, 2008, : 586 - 589