SVM Kernel and Genetic Feature Selection Based Automated Diagnosis of Breast Cancer

被引:0
|
作者
Singh I. [1 ]
Garg S. [1 ]
Arora S. [1 ]
Arora N. [1 ]
Agrawal K. [1 ]
机构
[1] Department of Computer Science and Engineering Delhi Technological University Delhi, India
关键词
Breast Cancer; Diagnosis; Feature Selection; Genetic Programming; Machine Learning; Support Vector Machines;
D O I
10.2174/2666255813999200818204842
中图分类号
学科分类号
摘要
Background: Breast cancer is the development of a malignant tumor in the breast of human beings (especially females). If not detected at the initial stages, it can substantially lead to an inoperable construct. It is a reason for the majority of cancer-related deaths throughout the world. Objectives: The main aim of this study is to diagnose breast cancer at an early stage so that the required treatment can be provided for survival. The tumor is classified as malignant or benign accurately at an early stage using a novel approach that includes an ensemble of the Genetic Algorithm for feature selection and kernel selection for SVM-Classifier. Methods: The proposed GA-SVM (Genetic Algorithm – Support Vector Machine) algorithm in this paper optimally selects the most appropriate features for training with the SVM classifier. Genetic Programming is used to select the features and the kernel for the SVM classifier. The Genetic Algorithm operates by exploring the optimal layout of features for breast cancer, thus, subjugating the problems faced in exponentially immense feature space. Results: The proposed approach accounts for a mean accuracy of 98.82% by using the Wisconsin Diagnostic Breast Cancer (WDBC) dataset available on UCI with the training and testing ratio being 50:50, respectively. Conclusion: The results prove that the proposed model outperforms the previously designed models for breast cancer diagnosis. The outcome assures that the GA-SVM model may be used as an effective tool in assisting the doctors in treating the patients. Alternatively, it may be utilized as an alternate opinion in their eventual diagnosis. © 2021 Bentham Science Publishers.
引用
收藏
页码:2875 / 2885
页数:10
相关论文
共 50 条
  • [1] A Kernel Based Feature Selection Method Used in the Diagnosis of Wisconsin Breast Cancer Dataset
    Jaganathan, P.
    Rajkumar, N.
    Nagalakshmi, R.
    ADVANCES IN COMPUTING AND COMMUNICATIONS, PT I, 2011, 190 : 683 - 690
  • [2] A Stochastic Gradient Descent Based SVM with Fuzzy-Rough Feature Selection and Instance Selection for Breast Cancer Diagnosis
    Onan, Aytug
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2015, 5 (06) : 1233 - 1239
  • [3] Kernel-based learning and feature selection analysis for cancer diagnosis
    Medjahed, Seyyid Ahmed
    Saadi, Tamazouzt Ait
    Benyettou, Abdelkader
    Ouali, Mohammed
    APPLIED SOFT COMPUTING, 2017, 51 : 39 - 48
  • [4] An automated breast cancer diagnosis using feature selection and parameter optimization in ANN
    S., Punitha
    Al-Turjman, Fadi
    Stephan, Thompson
    Computers and Electrical Engineering, 2021, 90
  • [5] An automated breast cancer diagnosis using feature selection and parameter optimization in ANN
    Punitha, S.
    Al-Turjman, Fadi
    Stephan, Thompson
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 90
  • [6] Breast Cancer Diagnosis using a Hybrid Genetic Algorithm for Feature Selection based on Mutual Information
    Alzubaidi, Abeer
    Cosma, Georgina
    Brown, David
    Pockley, A. Graham
    2016 9TH INTERNATIONAL CONFERENCE ON INTERACTIVE TECHNOLOGIES AND GAMES (ITAG), 2016, : 70 - 76
  • [7] Nonlinear feature selection using Gaussian kernel SVM-RFE for fault diagnosis
    Yangtao Xue
    Li Zhang
    Bangjun Wang
    Zhao Zhang
    Fanzhang Li
    Applied Intelligence, 2018, 48 : 3306 - 3331
  • [8] Nonlinear feature selection using Gaussian kernel SVM-RFE for fault diagnosis
    Xue, Yangtao
    Zhang, Li
    Wang, Bangjun
    Zhang, Zhao
    Li, Fanzhang
    APPLIED INTELLIGENCE, 2018, 48 (10) : 3306 - 3331
  • [9] Feature Selection Optimization for Breast Cancer Diagnosis
    Antunes, Ana Rita
    Matos, Marina A.
    Costa, Lino A.
    Rocha, Ana Maria A. C.
    Braga, Ana Cristina
    OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2021, 2021, 1488 : 492 - 506
  • [10] A Feature Selection Analysis in Breast Cancer Diagnosis
    Isikli Esener, Idil
    Ergin, Semih
    Yuksel, Tolga
    2015 MEDICAL TECHNOLOGIES NATIONAL CONFERENCE (TIPTEKNO), 2015,