Semantic Shape and Trajectory Reconstruction for Monocular Cooperative 3D Object Detection

被引:0
作者
Cserni, Marton [1 ]
Rovid, Andras [1 ]
机构
[1] Budapest Univ Technol & Econ BME, Fac Transportat Engn & Vehicle Engn, Dept Automot Technol, H-1111 Budapest, Hungary
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Semantics; Three-dimensional displays; Image reconstruction; Solid modeling; Trajectory; Pose estimation; Accuracy; Cameras; Computational modeling; Autonomous driving; shape aware monocular 3D object detection; trajectory reconstruction; semantic keypoints; cooperative perception;
D O I
10.1109/ACCESS.2024.3484672
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Currently the state-of-the-art monocular 3D object detectors use machine learning to estimate the 6DOF pose and shape of vehicles. This requires large amounts of precisely annotated 3D data for the training process and significant computing power for inference. Alternatively, there exist methods, which attempt to reconstruct target vehicle shapes and scales using projective geometry and classically detected feature points such as SURF and ORB. These methods use specific camera motion or geometrical constraints which cannot always be assumed. The resulting model is an unstructured point cloud which contains no semantic information, making its utility inconvenient in a distributed perception system. In this study, the applicability of semantic keypoints for vehicle shape and trajectory estimation is explored. A novel method is presented, which is capable reconstructing the semantic shape and trajectory of the target vehicle from a sequence of images with state-of-the art accuracy. The resulting semantic vertex model is then used for monocular, single frame 6DOF pose estimation with high accuracy. Building on this, a cooperative perception framework is also introduced. The algorithm is tested in both in-vehicle and infrastructure mounted mono-camera sensor setups. In addition to achieving state of the art depth accuracy in vehicle trajectory reconstruction on the Argoverse dataset, our method outperforms the state of the art shape-aware deep learning method in pose estimation in a cooperative perception scenario both in simulation and in real-world experiments.
引用
收藏
页码:167153 / 167167
页数:15
相关论文
共 50 条
  • [31] MKD-Cooper: Cooperative 3D Object Detection for Autonomous Driving via Multi-Teacher Knowledge Distillation
    Li, Zhiyuan
    Liang, Huawei
    Wang, Hanqi
    Zhao, Mingzhuo
    Wang, Jian
    Zheng, Xiaokun
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 1490 - 1500
  • [32] Semantic Frustum Based VoxelNet for 3D Object Detection
    Chen, Feng
    Wu, Fei
    Huang, Qinghua
    Feng, Yujian
    Ge, Qi
    Ji, Yimu
    Hu, Chang-Hui
    Jing, Xiao-Yuan
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 7629 - 7634
  • [33] Semantic-Enhanced ULIP for Zero-Shot 3D Shape Recognition
    Ding, Bo
    Zhang, Libao
    Sun, Hongbo
    He, Yongjun
    Qin, Jian
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1926 - 1936
  • [34] Superpixel Soup: Monocular Dense 3D Reconstruction of a Complex Dynamic Scene
    Kumar, Suryansh
    Dai, Yuchao
    Li, Hongdong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (05) : 1705 - 1717
  • [35] Boosting Monocular 3D Object Detection With Object-Centric Auxiliary Depth Supervision
    Kim, Youngseok
    Kim, Sanmin
    Sim, Sangmin
    Choi, Jun Won
    Kum, Dongsuk
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (02) : 1801 - 1813
  • [36] CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection
    Cao, Yuanzhouhan
    Zhang, Hui
    Li, Yidong
    Ren, Chao
    Lang, Congyan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 24727 - 24737
  • [37] GPro3D: Deriving 3D BBox from ground plane in monocular 3D object detection
    Yang, Fan
    Xu, Xinhao
    Chen, Hui
    Guo, Yuchen
    He, Yuwei
    Ni, Kai
    Ding, Guiguang
    NEUROCOMPUTING, 2023, 562
  • [38] Exploiting Ground Depth Estimation for Mobile Monocular 3D Object Detection
    Zhou, Yunsong
    Liu, Quan
    Zhu, Hongzi
    Li, Yunzhe
    Chang, Shan
    Guo, Minyi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (04) : 3079 - 3093
  • [39] Fully Sparse Fusion for 3D Object Detection
    Li, Yingyan
    Fan, Lue
    Liu, Yang
    Huang, Zehao
    Chen, Yuntao
    Wang, Naiyan
    Zhang, Zhaoxiang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (11) : 7217 - 7231
  • [40] Cooperative Perception for 3D Object Detection in Driving Scenarios Using Infrastructure Sensors
    Arnold, Eduardo
    Dianati, Mehrdad
    de Temple, Robert
    Fallah, Saber
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (03) : 1852 - 1864