Semantic Shape and Trajectory Reconstruction for Monocular Cooperative 3D Object Detection

被引:0
作者
Cserni, Marton [1 ]
Rovid, Andras [1 ]
机构
[1] Budapest Univ Technol & Econ BME, Fac Transportat Engn & Vehicle Engn, Dept Automot Technol, H-1111 Budapest, Hungary
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Semantics; Three-dimensional displays; Image reconstruction; Solid modeling; Trajectory; Pose estimation; Accuracy; Cameras; Computational modeling; Autonomous driving; shape aware monocular 3D object detection; trajectory reconstruction; semantic keypoints; cooperative perception;
D O I
10.1109/ACCESS.2024.3484672
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Currently the state-of-the-art monocular 3D object detectors use machine learning to estimate the 6DOF pose and shape of vehicles. This requires large amounts of precisely annotated 3D data for the training process and significant computing power for inference. Alternatively, there exist methods, which attempt to reconstruct target vehicle shapes and scales using projective geometry and classically detected feature points such as SURF and ORB. These methods use specific camera motion or geometrical constraints which cannot always be assumed. The resulting model is an unstructured point cloud which contains no semantic information, making its utility inconvenient in a distributed perception system. In this study, the applicability of semantic keypoints for vehicle shape and trajectory estimation is explored. A novel method is presented, which is capable reconstructing the semantic shape and trajectory of the target vehicle from a sequence of images with state-of-the art accuracy. The resulting semantic vertex model is then used for monocular, single frame 6DOF pose estimation with high accuracy. Building on this, a cooperative perception framework is also introduced. The algorithm is tested in both in-vehicle and infrastructure mounted mono-camera sensor setups. In addition to achieving state of the art depth accuracy in vehicle trajectory reconstruction on the Argoverse dataset, our method outperforms the state of the art shape-aware deep learning method in pose estimation in a cooperative perception scenario both in simulation and in real-world experiments.
引用
收藏
页码:167153 / 167167
页数:15
相关论文
共 50 条
  • [1] Shape-Aware Monocular 3D Object Detection
    Chen, Wei
    Zhao, Jie
    Zhao, Wan-Lei
    Wu, Song-Yuan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (06) : 6416 - 6424
  • [2] Probabilistic instance shape reconstruction with sparse LiDAR for monocular 3D object detection
    Ji, Chaofeng
    Wu, Han
    Liu, Guizhong
    NEUROCOMPUTING, 2023, 529 : 92 - 100
  • [3] MonoMPV: Monocular 3D Object Detection With Multiple Projection Views on Edge Devices
    Deng, Zhaoxue
    Hao, Bingsen
    Liu, Guofang
    Li, Xingquan
    Wei, Hanbing
    Huang, Fei
    Liu, Shengshu
    IEEE ACCESS, 2024, 12 : 136599 - 136612
  • [4] MonoEF: Extrinsic Parameter Free Monocular 3D Object Detection
    Zhou, Yunsong
    He, Yuan
    Zhu, Hongzi
    Wang, Cheng
    Li, Hongyang
    Jiang, Qinhong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10114 - 10128
  • [5] Monocular 3D Object Detection With Motion Feature Distillation
    Hu, Henan
    Li, Muyu
    Zhu, Ming
    Gao, Wen
    Liu, Peiyu
    Chan, Kwok-Leung
    IEEE ACCESS, 2023, 11 : 82933 - 82945
  • [6] Aerial Monocular 3D Object Detection
    Hu, Yue
    Fang, Shaoheng
    Xie, Weidi
    Chen, Siheng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (04) : 1959 - 1966
  • [7] Monocular 3D Object Detection Utilizing Auxiliary Learning With Deformable Convolution
    Chen, Jiun-Han
    Shieh, Jeng-Lun
    Haq, Muhamad Amirul
    Ruan, Shanq-Jang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (03) : 2424 - 2436
  • [8] Shape Prior Guided Instance Disparity Estimation for 3D Object Detection
    Chen, Linghao
    Sun, Jiaming
    Xie, Yiming
    Zhang, Siyu
    Shuai, Qing
    Jiang, Qinhong
    Zhang, Guofeng
    Bao, Hujun
    Zhou, Xiaowei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5529 - 5540
  • [9] Towards Accurate Reconstruction of 3D Scene Shape From A Single Monocular Image
    Yin, Wei
    Zhang, Jianming
    Wang, Oliver
    Niklaus, Simon
    Chen, Simon
    Liu, Yifan
    Shen, Chunhua
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 6480 - 6494
  • [10] MonoSample: Synthetic 3D Data Augmentation Method in Monocular 3D Object Detection
    Qiao, Junchao
    Liu, Biao
    Yang, Jiaqi
    Wang, Baohua
    Xiu, Sanmu
    Du, Xin
    Nie, Xiaobo
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (08): : 7326 - 7332