Machine Learning-Based Retrieval of Total Ozone Column Amount and Cloud Optical Depth from Irradiance Measurements

被引:0
作者
Sztipanov, Milos [1 ,2 ]
Krizsan, Levente [2 ]
Li, Wei [2 ]
Stamnes, Jakob J. [3 ]
Svendby, Tove [4 ]
Stamnes, Knut [2 ]
机构
[1] NOAA, Lynker, 5830 Univ Res Ct, College Pk, MD 20740 USA
[2] Stevens Inst Technol, Dept Phys, 1 Castle Point Terrace, Hoboken, NJ 07030 USA
[3] Univ Bergen, Dept Phys & Technol, N-5007 Bergen, Norway
[4] NILU, Inst Veien 18, N-2007 Kjeller, Norway
基金
美国海洋和大气管理局;
关键词
neural network; machine learning; ozone; cloud optical depth; composition; retrieval; measurement; modeling; radiative transfer; irradiance; BANDWIDTH FILTER INSTRUMENT; MULTICHANNEL;
D O I
10.3390/atmos15091103
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A machine learning algorithm combined with measurements obtained by a NILU-UV irradiance meter enables the determination of total ozone column (TOC) amount and cloud optical depth (COD). In the New York City area, a NILU-UV instrument on the rooftop of a Stevens Institute of Technology building (40.74 degrees N, -74.03 degrees E) has been used to collect data for several years. Inspired by a previous study [Opt. Express 22, 19595 (2014)], this research presents an updated neural-network-based method for TOC and COD retrievals. This method provides reliable results under heavy cloud conditions, and a convenient algorithm for the simultaneous retrieval of TOC and COD values. The TOC values are presented for 2014-2023, and both were compared with results obtained using the look-up table (LUT) method and measurements by the Ozone Monitoring Instrument (OMI), deployed on NASA's AURA satellite. COD results are also provided.
引用
收藏
页数:16
相关论文
共 22 条
[1]  
Aalerud T.N., 2006, The Norwegian UV Monitoring Network
[2]  
Ba J, 2014, ACS SYM SER
[3]  
Bishop C. M., 2006, Pattern Recognition and Machine Learning
[4]  
Broomhead D. S., 1988, Complex Systems, V2, P321
[5]   Measurements of biologically effective UV doses, total ozone abundances, and cloud effects with multichannel, moderate bandwidth filter instruments [J].
Dahlback, A .
APPLIED OPTICS, 1996, 35 (33) :6514-6521
[6]   New neural-network-based method to infer total ozone column amounts and cloud effects from multi-channel, moderate bandwidth filter instruments [J].
Fan, Lingling ;
Li, Wei ;
Dahlback, Arne ;
Stamnes, Jakob J. ;
Stamnes, Snorre ;
Stamnes, Knut .
OPTICS EXPRESS, 2014, 22 (16) :19595-19609
[7]  
Hastie T., 2009, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, VVol. 2, ppp. 1
[8]   Multichannel moderate-bandwidth filter instrument for measurement of the ozone-column amount, cloud transmittance, and ultraviolet dose rates [J].
Hoiskar, BAK ;
Haugen, R ;
Danielsen, T ;
Kylling, A ;
Edvardsen, K ;
Dahlback, A ;
Johnsen, B ;
Blumthaler, M ;
Schreder, J .
APPLIED OPTICS, 2003, 42 (18) :3472-3479
[9]   Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease [J].
Holick, MF .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2004, 80 (06) :1678S-1688S
[10]   Evaluation of ozone column measurements over Greece with NILU-UV multi-channel radiometers [J].
Kazantzidis, A. ;
Bais, A. F. ;
Zempila, M. M. ;
Meleti, C. ;
Eleftheratos, K. ;
Zerefos, C. S. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (15-16) :4273-4281