Plato: A Semantic Data Cube System Using Ontology-Based Data Access Technologies

被引:0
作者
Mantas, Anastasios [1 ]
Yfantis, Filippos [1 ]
Bilidas, Dimitris [1 ]
Stamoulis, George [1 ]
Kondylatos, Spyros [2 ]
Prapas, Ioannis [2 ]
Papoutsis, Ioannis [2 ]
Maria Tarraga Habas, Jose [3 ]
Sevillano Marco, Eva [3 ]
Castel, Fabien [4 ]
Laine, Camille [4 ]
Koubarakis, Manolis [1 ]
机构
[1] Natl & Kapodistrian Univ Athens, Dept Informat & Telecommun, Athens 15772, Greece
[2] Natl Observ Athens, Orion Lab, Athens 11810, Greece
[3] Univ Valencia, Image Proc Lab, Valencia 46010, Spain
[4] Murmuration SAS, F-31400 Toulouse, France
来源
IEEE ACCESS | 2024年 / 12卷
基金
欧盟地平线“2020”;
关键词
Ontologies; Soft sensors; Semantics; Geospatial analysis; Geometry; Databases; Computer architecture; Earth Observing System; Semantic data cubes; ontologies; ontology-based data access; Ontop; Earth observation;
D O I
10.1109/ACCESS.2024.3453494
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present Plato, a novel semantic data cube system leveraging Ontology-Based Data Access technologies. The concept of semantic data cubes, pioneered by Augustin et al., offers a novel approach to managing Earth Observation data, intertwining symbolic high-level concepts with raw numerical values. While data cube infrastructures have gained prominence, Plato stands out by bridging the gap between ontology-driven semantics and multidimensional data storage, enabling users to glean insights from data in a more intuitive and integrated manner. By employing Ontology-Based Data Access methodologies, Plato establishes connections between ontologies capturing geospatial knowledge and underlying data sources, facilitating seamless querying and interpretation. In this paper we describe the software architecture of Plato, we discuss its applications in the context of the DeepCube project and we evaluate its performance with real data from these applications.
引用
收藏
页码:130356 / 130374
页数:19
相关论文
共 35 条
[1]   An Ontology-Based Reasoning Framework for Querying Satellite Images for Disaster Monitoring [J].
Alirezaie, Marjan ;
Kiselev, Andrey ;
Langkvist, Martin ;
Klugl, Franziska ;
Loutfi, Amy .
SENSORS, 2017, 17 (11)
[2]   GeoSPARQL query support for scientific raster array data [J].
Almobydeen, Shahed Bassam ;
Viqueira, Jose R. R. ;
Lama, Manuel .
COMPUTERS & GEOSCIENCES, 2022, 159
[3]   Spatio-Temporal Gridded Data Processing on the Semantic Web [J].
Andrejev, Andrej ;
Misev, Dimitar ;
Baumann, Peter ;
Risch, Tore .
2015 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND DATA INTENSIVE SYSTEMS, 2015, :38-45
[4]  
[Anonymous], SPARQL 1.1 Query Language
[5]  
Arocena J, 2015, INT GEOSCI REMOTE SE, P5023, DOI 10.1109/IGARSS.2015.7326961
[6]   Semantic Earth Observation Data Cubes [J].
Augustin, Hannah ;
Sudmanns, Martin ;
Tiede, Dirk ;
Lang, Stefan ;
Baraldi, Andrea .
DATA, 2019, 4 (03)
[7]  
Baumann P, 1997, P 1997 ACM S APPL CO, P166, DOI [DOI 10.1145/331697.331732, 10.1145/331697.331732]
[8]   Array databases: concepts, standards, implementations [J].
Baumann, Peter ;
Misev, Dimitar ;
Merticariu, Vlad ;
Huu, Bang Pham .
JOURNAL OF BIG DATA, 2021, 8 (01)
[9]  
Baumann P, 2018, ISSI SCI REP SER, V15, P91, DOI 10.1007/978-3-319-65633-5_5
[10]   Ontop-spatial: Ontop of geospatial databases [J].
Bereta, Konstantina ;
Xiao, Guohui ;
Koubarakis, Manolis .
JOURNAL OF WEB SEMANTICS, 2019, 58