Machine learning-assisted design of high-entropy alloys with superior mechanical properties

被引:4
|
作者
He, Jianye [1 ,3 ]
Li, Zezhou [1 ,2 ,3 ]
Zhao, Pingluo [1 ,3 ]
Zhang, Hongmei [1 ,2 ,3 ]
Zhang, Fan [1 ,2 ,3 ]
Wang, Lin [1 ,3 ]
Cheng, Xingwang [1 ,2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Tangshan Res Inst, Tangshan 063000, Peoples R China
[3] Natl Key Lab Sci & Technol Mat Shock & Impact, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDROGEN STORAGE PROPERTIES; FEATURE-SELECTION; FATIGUE BEHAVIOR; NEURAL-NETWORKS; PHASE; MICROSTRUCTURE; ALGORITHMS; PREDICTION; CLASSIFICATION; FRAMEWORK;
D O I
10.1016/j.jmrt.2024.09.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Most recently, high-entropy alloys (HEAs) with 5 or more elements open a new area for materials exploration with substantial mechanical properties. The large composition space and numerous structures of HEAs bring significant difficulties for phase design and determination of mechanical property. Machine learning, one of most rapidly growing scientific and technical field, meets at the intersection of computer science and materials science, and at the center of artificial intelligence. Machine learning provides the opportunity to build up the relationship between multiple physical properties and mechanical properties. The fast changes of this field call for significant practice for materials community to utilize it as a more efficient, accurate and interpretable tool. In this review, we summarize the most promising machine learning models, combined with high-throughput simulation and experimental screening, to predict and fabricate HEAs with desired superb mechanical properties.
引用
收藏
页码:260 / 286
页数:27
相关论文
共 50 条
  • [21] Exploration for the physical origin and impact of chemical short-range order in high-entropy alloys: Machine learning-assisted study
    Shi, Panhua
    Xie, Zhen
    Si, Jiaxuan
    Yu, Jianqiao
    Wu, Xiaoyong
    Li, Yaojun
    Xu, Qiu
    Wang, Yuexia
    MATERIALS & DESIGN, 2025, 253
  • [22] Machine Learning-assisted Study of Low-, Medium-, and High-Entropy Hydrogen Storage Alloys Validated by the Experimental Data
    Somo, T. R.
    Lototskyy, M. V.
    Davids, M. W.
    Nyamsi, S. Nyallang
    Tarasov, B. P.
    Pasupathi, S.
    HIGH ENERGY CHEMISTRY, 2024, 58 (SUPPL4) : S528 - S542
  • [23] Ab Initio to Activity: Machine Learning-Assisted Optimization of High-Entropy Alloy Catalytic Activity
    Christian M. Clausen
    Martin L. S. Nielsen
    Jack K. Pedersen
    Jan Rossmeisl
    High Entropy Alloys & Materials, 2023, 1 (1): : 120 - 133
  • [24] Effect of pore design on the mechanical properties of nanoporous high-entropy alloys
    Li, Jiejie
    Li, Jie
    Zhao, Qinyu
    Chen, Yangheng
    Chen, Jian
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2023, 111
  • [25] Prediction of phases and mechanical properties of magnesium-based high-entropy alloys using machine learning
    Otieno, Robert
    Odhong, Edward, V
    Ondieki, Charles
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2024, 36 (10)
  • [26] Machine learning assisted design of high entropy alloys with desired property
    Wen, Cheng
    Zhang, Yan
    Wang, Changxin
    Xue, Dezhen
    Bai, Yang
    Antonov, Stoichko
    Dai, Lanhong
    Lookman, Turab
    Su, Yanjing
    ACTA MATERIALIA, 2019, 170 : 109 - 117
  • [27] Recent progress in the machine learning-assisted rational design of alloys
    Huadong Fu
    Hongtao Zhang
    Changsheng Wang
    Wei Yong
    Jianxin Xie
    InternationalJournalofMinerals,MetallurgyandMaterials, 2022, (04) : 635 - 644
  • [28] Recent progress in the machine learning-assisted rational design of alloys
    Fu, Huadong
    Zhang, Hongtao
    Wang, Changsheng
    Yong, Wei
    Xie, Jianxin
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2022, 29 (04) : 635 - 644
  • [29] Accelerated Design for High-Entropy Alloys Based on Machine Learning and Multiobjective Optimization
    Ma, Yingying
    Li, Minjie
    Mu, Yongkun
    Wang, Gang
    Lu, Wencong
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (19) : 6029 - 6042
  • [30] Recent progress in the machine learning-assisted rational design of alloys
    Huadong Fu
    Hongtao Zhang
    Changsheng Wang
    Wei Yong
    Jianxin Xie
    International Journal of Minerals, Metallurgy and Materials, 2022, 29 : 635 - 644